| 研究生: |
陳雅菱 Chen, Ya-Ling |
|---|---|
| 論文名稱: |
混合性多目標U型生產線平衡問題之研究 The study of Multi-objective model for U-line balancing problems |
| 指導教授: |
王泰裕
Wang, Tai-Yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 目標規劃 、混合性生產線 、U型生產線 |
| 外文關鍵詞: | mixed-model, U-line, goal programming |
| 相關次數: | 點閱:84 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,許多工廠都使用U型生產線取代傳統直線型生產線。在此型態下,系統中加入了多能工和及時(Just In Time)生產的概念,讓管理者可藉由靈活調度生產線上作業員的方式,迅速回應市場需求。因此,相較於傳統直線型生產線,U型生產線不但可以縮減人力也使得生產線更具有彈性。此外,由於過去學者們較少探討多個目標下之生產線平衡問題,以及為適應需求變動的環境和少量多樣的生產方式,本研究將考慮在多個目標下, 於一條U型生產線上生產多種產品的生產線平衡問題。
再者,由於過去學者曾經指出針對生產線平衡問題,若同時考量多個決策目標來衡量生產線平衡之績效,將更能符合實際生產情況。所以本研究將同時考量最小化工作站數目和生產週期時間之誤差值,利用目標規劃演算法可同時處理多個決策目標之特性,先針對每一個決策目標建立一個目標值,再利用數學規劃軟體求解,令每一個決策目標與目標值之誤差(deviation)總和最小。以期當生產線上發生一些決策目標互相衝突時,能提供管理者參考以適時做出最理想的決策。
In recent years, a lot of factories use U-shape assembly line instead of traditional straight assembly line for their manufacturing processes. In this situation, operators are multi-skilled to perform most of the operations. The managers can use this kind of U-line layout to respond the market’s demand quickly, dispatch operators flexibly. Thus, the number of workstations required on a U-line is less than a traditional line did. In the past, researchers didn’t discuss the multi-objective line balancing problems. To adapt the enterprises to a variety of production environment, in this thesis, we study the multi-objective model for U-line balancing problems.
Minimizing the deviation value of the cycle time and the number of workstations are studied in this research. Also a goal programming model is implemented to solve this problem. In fact, we judge a target value for each different goal first and the satisfactory solution is found by using the mathematic software subsequently. In goal programming, minimizing the deviational variables and reaching goals as close as possible are achieved simultaneously.
Aase, G. R., Schniederjans, M. J., and Olson, J. R. (2003). U-OPT: an analysis of exact U-shaped line balancing procedures. International Journal of Production Research 41(17), 4185-4210.
Battini, D., Faccio, M., Ferrari, E., Persona, A., and Sgarbossa, F. (2007). Design configuration for a mixed-model assembly system in case of low product demand. The International Journal of Advanced Manufacturing Technology 34(1), 188-200.
Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem. Management Science 32(8), 909-932.
Baykasoglu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for straight and U-type assembly line balancing problems. Journal of Intelligent Manufacturing 17(2), 217-232.
Becker, C., and Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research 168(3), 694–715.
Charnes, A., Cooper, W. W., and Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management Science 1(2), 138-151.
Deckro, R. F. (1989). Balancing cycle time and workstations. IIE Transactions 21(2), 106-111.
Deckro, R. F., and Rangachari, S. (1990). A goal approach to assembly line balancing. Computers and Operations Research 17(5), 509-521.
Erel, E., and Sarin, S. C. (1998). A survey of the assembly line balancing procedures. Production Planning and Control 9(5), 414-434.
Goicoechea, A., Hansen, D. R., and Duckstein, L. (1982). "Multiobjective decision analysis with engineering and business applications." John Wiley & Sons.
Gokcen, H., and Agpak, K. (2006). A goal programming approach to simple U-line balancing problem. European Journal of Operational Research 171(2), 577-585.
Gokcen, H., and Erel, E. (1997). A goal programming approach to mixed-model assembly line balancing problem. International Journal of Production Economics 48(2), 177-185.
Gunther, R. E., Johnson, G. D., and Peterson, R. S. (1983). Currently practiced formulations for the assembly line balance problem. Journal of Operations Management 3(4), 209-221.
Ignizio, J. P. (1976). "Goal programming and extensions." Lexington Books Lexington, Mass.
Kara, Y., Ozcan, U., and Peker, A. (2007). Balancing and sequencing mixed-model just-in-time U-lines with multiple objectives. Applied Mathematics and Computation 184(2), 566-588.
Mansouri, S. A. (2005). A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines. European Journal of Operational Research 167(3), 696-716.
McMullen, P. R., and Tarasewich, P. (2003). Using ant techniques to solve the assembly line balancing problem. IIE Transactions 35(7), 605-617.
Miltenburg, G. J., and Wijingaard, J. (1994). The U-line line balancing problem. Management Science 40(10), 1378-1388.
Miltenburg, J. (2002). Balancing and scheduling mixed-model U-shaped production lines. International Journal of Flexible Manufacturing Systems 14(2), 119-151.
Miltenburg, J. (2007). Level schedules for mixed-model JIT production lines: characteristics of the largest instances that can be solved optimally. International Journal of Production Research 45(16), 3555-3577.
Miltenburg, J., and Sinnamon, G. (1989). Scheduling mixed-model multi-level just-in-time production systems. International Journal of Production Research 27(9), 1487-1509.
Okamura, K., and Yamashina, H. (1979). A heuristic algorithm for the assembly line model-mix sequencing problem to minimize the risk of stopping the conveyor. International Journal of Production Research 17(3), 233-247.
Sparling, D., and Miltenburg, J. (1998). The mixed-model U-line balancing problem. International Journal of Production Research 36(2), 485-501.
Tamiz, M., Jones, D. F., and El-Darzi, E. (1995). A review of goal programming and its applications. Annals of Operations Research 58(1), 39-53.
Tonge, F. M. (1960). Summary of a heuristic line balancing procedure. Management Science 7(1), 21-42.
Urban, T. L. (1998). Optimal balancing of U-shaped assembly lines. Management Science 44(5), 738-741.