| 研究生: |
柳棨文 Liou, Chi-Wen |
|---|---|
| 論文名稱: |
用水及處理網路中混合器與儲槽對操作彈性之影響分析 The Impacts of Mixers & Buffer Tanks on the Operational Flexibility of Water Usage and Treatment Networks |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 混合器 、水網路 、彈性 、緩衝槽 |
| 外文關鍵詞: | buffer tank, mixer, water network, flexibility |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於實際化學製程的操作會受到外部環境的影響,而有時甚至會造成無法達成操作目標的情況,因此近年來彈性分析成為程序設計的重要課題之一。由於在過去水網路的設計大多根據固定操作條件完成,並未考慮到不確定參數對網路的影響,因此在本研究透過求解數學規劃模式來分析用水及廢水處理網路之操作彈性,並討論混合器及緩衝槽對網路彈性的影響。此外,我們也提出了一個能兼顧省水及操作彈性的網路設計步驟,並利用一系列案例來展示此設計步驟的可行性及有效性。
Process operations practically will be affected by external environment, and the process could give rise to the condition of infeasibility. So the analysis of flexibility becomes an important topic in chemical process design. In the past, the design of water networks is usually constructed under fixed operational conditions and without the consideration of the effects of uncertainty parameters. This research analyzes the operational flexibility of water usage and treatment networks by adopting mathematical programming, and discuss the effects of mixers and buffer tanks on the flexibility of networks. In addition, we propose the steps for designing water networks that could take both water saving and operational flexibility into consideration. Finally, series of cases is provided in this study to demonstrate the designing steps of networks.
Alva-Argaez, A., A. C. Kokossis, and R. Smith, “Wastewater Minimisation of Industrial Systems Using an Integrated Approach,” Comput. Chem. Eng., 22, 741 (Suppl).
Bagajewicz, M., “Review of Recent Design Procedures for Water Networks in Refineries and Process Plants,” Comput. Chem. Eng., 24, 2093 (2000).
Biegler, L. T., I. E. Grossmann, and A. W. Westerberg, “Systematic Methods of Chemical Process Design,” Prentice-Hall, U.S.A.(1999).
Chang, C. T., and B. H. Li, “Improved Optimization Strategies for Generating Practical Water-Usage and -Treatment Network Structures,” Ind. Eng. Chem. Res., 44, 3607 (2005).
Feng, X., and W. D. Seider, “New Structure and Design Methodology for Water Networks,” Ind. Eng. Chem. Res., 40, 6140 (2001).
Grossmann, I. E., and C. A. Floudas, “Active Constraint Strategy for Flexibility Analysis in Chemical Processes,” Comput. Chem. Eng., 11, 675 (1987).
Halemane, K. P., and I. E. Grossmann, “Optimal Process Design Under Uncertainty,” AICHE J., 29, 425 (1983).
Huang, C. H., C. T. Chang, H. C. Ling, and C. C. Chang, “A Mathematical Programming Model for Water Usage and Treatment Network Design,” Ind. Eng. Chem. Res., 38, 2666 (1999).
Ierapetritou, M. G.,”A New Approach for Quantifying Process Feasibility: Convex and 1-D Quasi-Convex Regions,” AICHE J., 47, 1 (2001).
Karuppiah, R., and I. E. Grossmann, “Global Optimization for the Synthesis of Integrated Water Systems in Chemical Process,” Comput. Chem. Eng., 30, 650 (2006).
Kuo, W. C. J., and R. Smith, “Effluent Treatment System Design.” Chem. Eng. Sci., 52, 4273 (1997).
Ostrovsky, G. M., L. E. K. Achenie, Y. P. Wang, and Y. M. Volin, ”A New Algorithm for Computing Process Flexibility,” Ind. Eng. Chem. Res., 39, 2368 (2000).
Ostrovsky, G. M., Y. M. Volin, and M. M. Senyavin, “An Approach to Solving a Two-Stage Optimization Problem Under Uncertainty,” Comput. Chem. Eng., 21, 317 (1997).
Ostrovsky, G. M., Y. M. Volin, E. I. Barit, and M. M. Senyavin, “Flexibility Analysis and Optimization of Chemical Plants with Uncertain Parameters,” Comput. Chem. Eng., 18, 755 (1994).
Swaney, R. E., and I. E. Grossmann, “An Index for Operational Flexibility in Chemical Process Design-Part I: Formulation and Theory,” AICHE J., 36, 139 (1985a).
Swaney, R. E., and I. E. Grossmann, ‘‘An Index for Operational Flexibility in Chemical Process Design-Part II: Computational Algorithms,’’ AICHE J., 31, 631 (1985b).
Takama, N., T. Kuriyama, K. Shiroko, and T. Umeda, “Optimal Water Allocation in a Petroleum Refinery,” Comput. Chem. Eng., 4, 251 (1980).
Tsai, M. J., and C. T. Chang, “Water Usage and Treatment Network Design Using Genetic Algorithms,” Ind. Eng. Chem. Res., 40, 4874 (2001).
Wang, B., X. Feng, and Z. Zhang, “A Design Methodology for Multiple-Contaminant Water Networks with Single Internal Water Main,” Comput. Chem. Eng., 27, 903 (2003).
Wang, Y. P., and R. Smith, “Wastewater Minimization,” Chem. Eng. Sci., 49, 981(1994a).
Wang, Y. P., and R. Smith, “Design of Distributed Effluent Treatment Systems,” Chem. Eng. Sci., 49, 3127 (1994b).