簡易檢索 / 詳目顯示

研究生: 蔡孟諭
Tsai, Meng-yu
論文名稱: 農業廢棄物作為還原劑對鐵礦複合球團碳熱還原反應之影響
Study on Agricultural Waste as Reducing Agent for Composite Pellets during Carbothermic Reduction
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 高料層煉鐵製程碳熱還原反應升溫速率直接還原鐵樣貌變化農業廢棄物焙燒處理
外文關鍵詞: carbothermic reduction, biomass, agricultural waste, torrefaction, volume change
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   煉鐵工業使用高爐至今已超過五百年,而在這段期間逐漸演變成高效率且高能效的反應器,目前高爐仍是全世界主要的產鐵設備,然而,高爐不僅需要焦炭作為還原劑,其煉焦廠的價格昂貴且衍生許多相關的環境問題,例如:二氧化碳的排放與顆粒物質的汙染;此外,塊狀材料與高品料的價格亦有上漲的趨勢,故許多鋼鐵工業致力於開發新型的煉鐵製程,以期降低汙染處理的成本並提高反應效率。
      高料層煉鐵製程屬於煤基直接還原法,還原劑部分則可直接使用未經過煉焦製程的碳來源,目前的研究大部分將鐵礦與煤礦混合造粒成煤鐵礦複合球團後,堆疊7~8層的料堆並使用熱空氣由上方進行球團加熱,使其在高溫下進行碳熱還原反應,最終產出高金屬化率的直接還原鐵。其中煤基直接還原法與傳統高爐煉鐵最大的差異,在於前者使用的還原劑可為非冶金煤,生質煤的使用也具有可行性。
      而除了煤礦、生質炭中的固定碳作為主要的還原劑,升溫過程中煤礦亦會釋出揮發分並裂解成具有還原性的CO、H2、CH4等小分子氣體幫助鐵礦還原,又隨著升溫歷程及還原劑的不同,VM裂解的狀況也會有所改變,故還原劑在升溫歷程中的裂解產氣亦是一個觀察依據,可協助解釋鐵礦的還原過程。
      又在高料層碳熱還原煉鐵製程中,若球團產生軟熔崩塌、膨脹的狀況,會使整個料層的熱傳受到阻礙,進而使整體料堆的反應狀況受到影響,降低了金屬化率及金屬鐵產率;若球團具有良好的收縮率且沒有軟熔崩塌現象,輻射熱傳將不受阻礙地從上層傳遞到下層,使整體料堆具有良好的還原狀況,也能夠達到高金屬化率及金屬鐵產率。
      焙燒處理為一種生質物前處理方式,能有效提升固定碳含量、研磨性與密度,並降低水分與揮發分以提升能源密度,同時可以使焙燒後產物具有疏水性以利後續運輸與保存;而對於本研究,固定碳含量為鐵礦碳熱還原反應中最主要的還原劑,並可有效提高直接還原鐵的產率。
      為探討農業廢棄物如:稻草、廢棄菇包等對於鐵礦在碳熱還原過程中的熔融性質與還原反應影響,本研究使用不同種類的農業廢棄物與鐵礦製成的複合球團,利用還原過程影像紀錄、化學分析等討論球團軟熔崩塌的成因,並利用氣體分析儀量測不同升溫歷程下複合球團的產氣狀況與揮發份的裂解狀況(即乾餾生質煤的產氣狀況),以此基準下定量並比較不同種類生質物對球團還原的影響。

    Blast furnace is still the main ironmaking equipment around the world, but the pollution from sintering and coking causes huge processing costs and environmental issues, eco-friendly ironmaking processes are under development. Among them, PSH ironmaking process is the potential methods to reduce greenhouse gas emission.
    Torrefaction is a treatment for biomass which increasing fixed carbon content, energy density and grindability, and decreasing the volatile matter. For our experiments, fixed carbon content is the most important property because it’s the main reducing agent during carbothermic reduction.
    In this study, we experiment with the reduction of the composite pellets under three different heating rates and different agricultural wastes as reducing agent. We use interrupted experiments and chemical analysis to find out the reduction process, and use CCD, gas analyzer to monitor the whole reaction which can provide us continuous and instant data about the pellets.
    The results shows that using torrefied biomass as reducing agent for composite pellets during carbothermic reduction would get more DRI production than using untorrefied biomass, but it’s still lower than we use coal as reducing agent. Besides, some problems also appear like: reducing the strength of original composite pellets and stackability, slowing down the reduction rate and swelling phenomenon happening during the reaction.

    摘要..............................................................I 圖目錄..........................................................XIV 表目錄.........................................................XVII 第一章 緒論......................................................1  1.1 研究背景...................................................1  1.2 研究目的...................................................5 第二章 文獻回顧.................................................10  2.1 碳熱還原煉鐵製程之發展....................................10  2.2 RHF與PSH煉鐵製程.........................................12  2.3 還原反應機制..............................................16 2.4 生質物與生質能............................................19  2.5 焙燒處理..................................................20  2.6 生質炭應用於煉鐵製程分析..................................24 第三章 實驗方法及步驟...........................................28  3.1 原料......................................................28   3.1.1 鐵礦..................................................28   3.1.2 還原劑................................................28   3.1.3 黏結劑................................................29  3.2 實驗設備..................................................31   3.2.1 原料前處理............................................31   3.2.2 生質物焙燒爐..........................................31   3.2.3 配料成形設備..........................................32   3.2.4 高溫管型爐、冰水機、移動式進料設備、光學影像紀錄.......32   3.2.5 氣體分析儀............................................33  3.3 實驗分析方法..............................................39   3.3.1 近似分析..............................................39   3.3.2 元素分析..............................................40   3.3.3 還原過程之光學影像觀察................................41   3.3.4 還原過程之氣體分析....................................41   3.3.5 中斷實驗樣品之化學分析................................43  3.4 實驗步驟..................................................44   3.4.1 配料與球團成型........................................44   3.4.2 高溫碳熱還原實驗與光學影像觀測、氣體分析...............45   3.4.3 樣品保存與化學分析....................................46 第四章 結果與討論...............................................49  4.1 生質物還原劑之特性........................................49   4.1.1 焙燒對於生質物還原劑之VM裂解產氣狀況影響..............49   4.1.2 生質物還原劑對於複合球團初始強度之影響................51  4.2 不同生質物還原劑與鐵礦進行碳熱還原反應之狀況..............57   4.2.1 球團樣品歷經不同升溫歷程之樣貌觀測與體積變化趨勢......57   4.2.2 球團樣品歷經不同升溫歷程之產氣狀況與還原度變化........58   4.2.3 中斷實驗之化學分析結果比較............................60  4.3 焙燒對於生質物還原劑與鐵礦進行碳熱還原反應之影響..........83   4.3.1 球團樣品歷經不同升溫歷程之樣貌觀測與體積變化趨勢......83   4.3.2 球團樣品歷經不同升溫歷程之產氣狀況與還原度變化........84   4.3.3 中斷實驗之化學分析結果比較............................86  4.4 不同生質物還原劑對於DRI產率之影響.........................99 第五章 結論....................................................102 參考文獻........................................................105

    [1] R.K.Pachauri , M.R.Allen , V.R.Barros , J.Brpp,e . W.Cramer , R.Christ , et al., Climate change 2014:synthesis report. Contribution of Working Group I,II and III to the fifth assessment report of the Intergovern-
    mental Panel on Climate Change:IPCC , 2014
    [2] 陳秉詮編撰 ,”煉鋼製程的節能減碳,”科學發展月刊 , vol.486 , pp.20-24 , 2013
    [3] S.K.Dutta and R.Sah ,”Smelting Reduction Processes,”in Encyclopedia of Iron , Steel , and Their Alloys , ed:CRC Press , pp.3208-3236 , 2015
    [4] H.Michishita and H.Tanaka ,”Prospects for coal-based direct reduction process,”Kobelco Technology Review , vol.29 , pp.69 , 2010
    [5] 劉世賢編撰 ,”鋼鐵廠固雜料產出及資源化技術介紹,”中工高雄工會刊 , 第18卷第2期 , pp.56-63 , 2010
    [6] W.Lu and D.F.Huang ,”The evolution of ironmaking process based on coal-containing iron ore agglomerates,”ISIJ international , vol.41 , pp.807-812 , 2001
    [7] Birat Jean Pierre編撰 ,”後京都(議定書)時帶的鋼鐵工業與CO2排放問題,”中國鋼鐵年會論文集 , 2005年
    [8] R.C.Gupta ,”Wood Char as Sustainable Reduction for Ironmaking in the 21st Centry,”Mineral Processing and Extractive Metallurgy Review , vol.24 , pp.203-231 , 1998
    [9] 行政院環保署 ,”農業廢棄物管理策略,”103年1月
    [10] 蔡幸慈編撰 ,”新煉鐵製程法之介紹”, 化工技術 , 第12卷第12期 , pp.147-164 , 2004年.
    [11] X. Chunbao Charles and D.-q.Cang , ”A brief overview of low CO2 emission technologies for iron and steel making,”Journal of iron and steel research , International , vol.17 , pp.1-7 , 2010.
    [12] S.Kikuchi , J.Kopfle , J.Mcclelland , and J.Ripke ,“Rotary hearth furnace technologies for iron ore and recycling applications,”
    Archives of metallurgy and materials , vol.53 , pp.541-545 , 2008
    [13] 黄雄源 和 周兴灵 , "现代非高炉炼铁技术的发展现状与前景 (一)," 金属材料与冶金工程 , pp.49-56 , 2007年
    [14] A.Hasanbeigi , M.Arens , and L.Price ,“Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical revies,”Renewable and Sustainable Energy Reviews , vol.33 , pp.645-658 , 2014
    [15] J.Moon and V.Sahajwalla ,”Investigation into the role of the boudouard reaction in self-reducing iron oxide and carbon briquettes,”Metallur-
    gical and Materials B , vol.37 , pp.215-221 , 2006.
    [16] 陳維新編撰 ,”生質物與生質能”, 高立圖書有限公司 , 2012年7月
    [17] 吳耿東, 李宏台,”全球生質能源應用現況與未來展望”, 林業研究專訊 14(3) , pp.5-9 , 2007年
    [18] 行政院 ,“再生能源發展條例”, 2009年
    [19] Bergman,P.C.A., A.R.Boersma, R.W.R.Zwart and J.H.A.Kiel,”Torrefaction for biomass co-firing in existing coal-fired power station,”ECN report , ECN-C , pp.5-13 , 2005
    [20] Bridgeman, T.G. , J.M.Jones , I.Shidld and P.T.Williams ,”Torrefaction of reed canary grass , wheat straw and willow to enhance solid fuel qualities and combustion properties,”Fuel , vol.87 , pp.844-856 , 2008
    [21] Bridgeman, T.G., J.M.Jones, A.Williams and D.J.Waldron,”An investiga-
    tion of the grindability of two torrefied energy crops,”Fuel , vol.89 , pp.3911-3918 , 2010
    [22] Caroline A. Masiello , Ye Chen , Xiaodong Gao , Shirley Liu , Hsiao-Ying Cheng , Matthew R. Bennett , Jennifer A. Rudgers , Daniel S. Wagner , Kyriacos Zygourakis , and Jonathan J. Silberg ,”Biochar and Microbial Signaling:Production Conditions Determine Effects on Micro-
    bial Communication,”Environ Science & Technology , vol.47 , pp.11496-11503 , 2013
    [23] H.Meyers and R.F.Jennings ,”Charcoal Iron Making : A Technical and Economic Reviews of Brazilian Experience,”SEAISI Quarterly , pp.38-80 , 1979
    [24] Rolf Degel等編撰 ,”生質煤基的新一代旋轉爐床技術”,世界鋼鐵第3期 , 2000
    [25] H.Han , D.Duan , P.Yuan and D.Li ,”Biomass reducing agent utilization in rotary hearth furnace for DRI production,”Ironmaking and Steelmaking , vol.42 , no.8 , pp.579-584 , 2015
    [26] L.Boon-Brett , J.Bousek and P.Moretto ,”Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations : part II–selected sensor test results,”International Journal of Hydrogen Energy , vol.34 , pp.562-571 , 2009
    [27] 張皓荀 ,”煤鐵礦複合球團於不同溫度歷程之碳熱還原和形貌變化研究,”National Cheng Kung University Department of Materials Science and Engineering , 2015
    [28] 陳潔儀 ,”氧化鐵-碳複合球團於碳熱還原過程中收縮現象之研究,”National Cheng Kung University Department of Materials Science and Engineering , 2016
    [29] 王啓豪 ,”煤礦揮發分對碳熱還原反應在不同升溫歷程的影響,”National Cheng Kung University Department of Materials Science and Engineering ,2017

    下載圖示 校內:2024-02-10公開
    校外:2024-02-10公開
    QR CODE