| 研究生: |
歐任修 Ou, Ren-Xiu |
|---|---|
| 論文名稱: |
含氮有機分子做為界面修飾層用於反式高分子太陽能電池 Nitrogen-Based Organic Molecules as Interfacial Modification Layer in Inverted Polymer Solar Cells |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 高分子太陽能電池 、氧化鋅 、界面修飾 |
| 外文關鍵詞: | polymer solar cell, zinc oxide, interfacial modification layer |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以含氮有機分子做為氧化鋅與主動層間之界面修飾層,藉由分子間化學吸附機制,鈍化氧化鋅上的缺陷,提升與高分子主動層的親和性,得到連續且沒有孔洞之薄膜,同時提升整體元件效率及穩定性。
第一部分使用1-苯甲醯-2-硫脲(1-Benzoyl-2-thiourea, BT)做為界面修飾層,經證實BT上的胺基會與鋅形成鍵結,進一步鈍化氧化鋅表面之氧缺陷,同時形成界面偶極(interface dipole),降低氧化鋅之功函數並促進電子傳遞,此外BT中具有疏水性之苯環,使得修飾後之界面更趨疏水,與主動層間將有更好的界面相容性。因此整體元件效率從未修飾之8.16%提升至修飾後之9.16%,約為12%之增幅。
第二部分以吡啶(Pyridine)做為主體分別接上苯基(4-Phenylpyridine, 4-Py)與叔丁基(4-Tert-butylpyridine, 4-tbp)做為界面修飾層,經證實分子中的氮同樣會與鋅形成鍵結,鈍化氧化鋅表面之氧缺陷並形成interface dipole,而由數據顯示,兩種分子中疏水性之苯環與叔丁基團也具有改變界面親疏水性之能力。因此經4-Py與4-tbp修飾後之元件效率從8.16%分別提升至9.07%和9.29%,約為11%和13%之增幅。
This work demonstrated highly efficient and stable Polymer Solar Cells (PSCs) with a series of Nitrogen-Based Organic Molecules (NOMs), including 1-benzoyl-2-thiourea (BT), 4-phenylpyridine (4-Py) and 4-tert-butylpyridine (4-tbp) as interfacial modification layers. NOMs could actually adsorb on ZnO by forming coordinate covalent bond between nitrogen of NOMs and zinc of ZnO, further passivating the oxygen vacancies and inducing interfacial dipole to promote electron transportation. Besides, the hydrophobic group of NOMs, i.e. phenyl group and tert-butyl group, could increase the surface hydrophobicity to enhance the contact with active layer. As a result, the NOMs-based devices showed better morphology, better charge carrier selectivity as well as reduced recombination probability, overall boosting short circuit current density (Jsc), fill factor (FF) and long-term stability. The best power conversion efficiency (PCE) of NOMs-based devices could achieve 9.16, 9.07 and 9.29% for BT, 4-Py and 4-tbp-based devices. The PCE enhancement was about 11-13%, comparing to the pristine ZnO devices (8.16%). This study provided a facile mode to influence morphological and electrical properties of ZnO, and fabricating high performance PSCs by solution process.
1. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.(revised 04/13, 2018).
2. M. Zhang, Y. Gu, X. Guo, F. Liu, S. Zhang, L. Huo, T. P. Russell and J. Hou, Adv. Mater., 2013, 25, 4944-4949.
3. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, Angew. Chem. Int. Ed., 2011, 50, 2995-2998.
4. T. L. Nguyen, H. Choi, S. J. Ko, M. A. Uddin, B. Walker, S. Yum, J. E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim and H. Y. Woo, Energy Environ. Sci., 2014, 7, 3040-3051.
5. Y. Huang, F. Liu, X. Guo, W. Zhang, Y. Gu, J. Zhang, C. C. Han, T. P. Russell and J. Hou, Adv. Energy Mater., 2013, 3, 930-937.
6. Q. Peng, X. Liu, D. Su, G. Fu, J. Xu and L. Dai, Adv. Mater., 2011, 23, 4554-4558.
7. R. P. Qin, W. W. Li, C. H. Li, C. Du, C. Veit, H. F. Schleiermacher, M. Andersson, Z. S. Bo, Z. P. Liu, O. Inganas, U. Wuerfel and F. L. Zhang, J. Am. Chem. Soc., 2009, 131, 14612-14613.
8. F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard and M. Jørgensen, Adv. Mater., 2014, 26, 29-39.
9. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 2013, 15, 8972-8982.
10. C. W. Tang and A. C. Albrecht, Nature, 1975, 254, 507-509.
11. C. W. Tang, Appl. Phys. Lett., 1986, 48, 183-185.
12. G. Yu and A.J. Heeger, J. Appl. Phys., 1995, 78, 4510-4515.
13. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Appl. Phys. Lett., 2011, 78, 841-843.
14. F. Padinger, R.S. Rittberger and N.S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85-88.
15. Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li and G. Cao, Adv. Funct. Mater., 2012, 22, 2194-2201.
16. S. Zhang, L. Ye and J. Hou, Adv. Energy Mater., 2016, 6, 1502529.
17. F. C. Krebs and K. Norrman, Prog. Photovolt: Res. and Appl., 2007, 15, 697-712.
18. M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett., 2000, 77, 2255-2257.
19. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman and W. R. Salaneck, J. Electron Spectrosc. Relat. Phenom., 2001, 121, 1-17.
20. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow and Z. Q. Gao, Appl. Phys. Lett., 2002, 80, 2788-2790.
21. L. M. Chen, Z. Hong, G. Li and Y. Yang, Adv. Mater., 2009, 21, 1434-1449.
22. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu and Y. Yang, Adv. Funct. Mater., 2009, 19,1227-1234.
23. L. M. Chen, Z. Xu, Z. Hong and Y. Yang, J. Mater. Chem., 2010, 20, 2575-2598.
24. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
25. M. Y. Song, K. J. Kim and D. Y. Kim, Sol. Energy Mater. Sol. Cells, 2005, 85, 31-39.
26. A. Watanabe and A. Kasuya, Thin Solid Films, 2005, 483, 358-366.
27. H. You, Y. Dai, Z. Zhang and D. Ma, J. Appl. Phys., 2007, 101, 026105.
28. C. Cheung, W. Song and S. K. So, Org. Electron., 2010, 11, 89-94.
29. 黃建榮, 光聯雙月刊, 2014, 55-60.
30. C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin and Y. J. Hsu, J. Mater. Chem., 2009, 19, 1643-1647.
31. J. H. Huang, H. Y. Wei, K. C. Huang, C. L. Chen, R. R. Wang, F. C. Chen, K. C. Ho and C. W. Chu, Energy Environ. Sci., 2010, 3, 654-658.
32. S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, J. Mater. Chem., 2008, 18, 5113-5119.
33. Y. J. Kang, C. S. Kim, D. S. You, S. H. Jung, K. Lim, D. G. Kim, J. K. Kim, S. H. Kim, Y. R. Shin, S. H. Kwon and J. W. Kang, Appl. Phys. Lett., 2011, 99, 073308.
34. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23, 1679-1683.
35. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
36. T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng and Y. Cao, J. Phys. Chem. C, 2010, 114, 6849-6853.
37. H. L. Yip and A. K. Y. Jen, Energy Environ. Sci., 2012, 5, 5994-6011.
38. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Appl. Phys. Lett., 2008, 93, 221107.
39. J. P. Liu, K. L. Choy and X. H. Hou, J. Mater. Chem., 2011, 21, 1966-1969.
40. Y. Zhou, H. Cheun, J. W. J. Potscavage, C. Fuentes- Hernandez, S. J. Kim and B. Kippelen, J. Mater. Chem., 2010, 20, 6189-6194.
41. Y. Zhu, X. Xu, L. Zhang, J. Chen and Y. Cao, Sol. Energy Mater. Sol. Cells, 2012, 97, 83-88.
42. Y Vaynzof, D Kabra, L Zhao, P. K. H. Ho, A. T. S. Wee and R. H. Friend, Appl. Phys. Lett., 2010, 97, 156.
43. C. Y. Chang, K. T. Lee, W. K. Huang, H. Y Siao and Y. C Chang, Chem. Mater., 2015, 27, 5122-5130.
44. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater., 2004, 16, 1009-1013.
45. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett., 2007, 91, 113520.
46. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Appl. Phys. Lett., 2008, 93, 221107.
47. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23, 1679-1683.
48. Z. Hu, J. Zhang and Y. Zhu, Sol. Energy Mater. Sol. Cells, 2013, 117, 610-616.
49. S. G. Ihn, K. S. Shin, M. J. Jin, X. Bulliard, S. Yun, Y. Suk Choi, Y. Kim, J. H. Park, M. Sim, M. Kim, K. Cho, T. Sang-Kim, D. Choi, J. Y. Choi, W. Choi and S. W. Kim, Sol. Energy Mater. Sol. Cells, 2011, 95, 1610-1614.
50. Z. Liang, Q. Zhang, L. Jiang and G. Cao, Energy Environ. Sci., 2015, 8, 3442-3476
51. T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng and Y. Cao, J. Phys. Chem. C, 2010, 114, 6849-6853.
52. L.K. Jagadamma, M. Abdelsamie, A. El-Labban, E. Aresu, G.O.N. Ndjawa, D.H Anjum and D. Cha, J. Mater. Chem. A, 2014, 2, 13321-13331.
53. A. L. Roest, J. J. Kelly, D. Vanmaekelbergh and E. A. Meulenkamp, Phys. Rev. Lett., 2002, 89, 036801.
54. W. Qin, X. Xu, D. Liu, C. Ma, L. Yang, S. Yin, F. Zhang and J. Wei, J. Renewable Sustainable Energy, 2013, 5, 053106.
55. F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen, Nanotechnology, 2008, 19, 424013.
56. J. M. Cho, S. W. Kwak, H. Aqoma, J. W. Kim, W. S. Shin, S. J. Moon, S. Y. Jang and J. Jo, Org. Electron., 2014, 15, 1942-1950.
57. S. Shao, K. Zheng, T. Pullerits and F. Zhang, ACS Appl. Mater. Interfaces, 2012, 5, 380–385.
58. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. Tsang, T. Lai, J. R. Reynolds and F. So, Nat. Photonics, 2011, 6, 115-120.
59. R. Steim, S. A. Choulis1, P. Schilinskyl and C. J. Brabec, Appl. Phys. Lett., 2008, 92, 093303.
60. L. Nian, W. Zhang, S. Wu, L. Qin, L. Liu, Z. Xie, H. Wu and Y. Ma, ACS Appl. Mater. Interfaces, 2015, 7, 25821-25827.
61. C. V. Hoven, R. Yang, A. Garcia, V. Crockett, A. J. Heeger and G. C. Bazan, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 12730-12735.
62. H. J. Bolink, H. Brine, E. Coronado and M. Sessolo, ACS Appl. Mater. Interfaces, 2010, 2, 2694-2698.
63. J. H. Seo, A. Gutacker, B. Walker, S. Cho, A. Garcia, R. Yang, T. Q. Nguyen, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc., 2009, 131, 18220-18221.
64. J. H. Seo, E. B. Namdas, A. Gutacker, A. J. Heeger and G. C. Bazan, Appl. Phys. Lett., 2010, 97, 043303.
65. J. Luo, H. Wu, C. He, A. Li, W. Yang and Y. Cao, Appl. Phys. Lett., 2009, 95, 043301.
66. C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan and Y. Cao, J. Mater. Chem., 2010, 20, 2617-2622.
67. J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc., 2011, 133, 8416-8419.
68. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, Energy Environ. Sci., 2012, 5, 8208-8214.
69. X. Guan, K. Zhang, F. Huang, G. C. Bazan and Y. Cao, Adv. Funct. Mater., 2012, 22, 2846-2854.
70. J. F. Fang, B. H. Wallikewitz, F. Gao, G. L. Tu, C. Muller, G. Pace, R. H. Friend and W. T. S. Huck, J. Am. Chem. Soc.,2011, 133, 683-685.
71. U. Scherf, Angew. Chem., Int. Ed., 2011, 50, 5016-5017.
72. C. Duan, K. Zhang, X. Guan, C. Zhong, H. Xie, F. Huang, J. Chen and J. Peng, Chemical Science, 2013, 4, 1298-1307.
73. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganäs and F. Zhang, Sol. Energy Mater. Sol. Cells, 2009, 93, 497-500.
74. J. W. Shim, H. Cheun, J. Meyer, C. Fuentes-Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn and B. Kippelen, Appl. Phys. Lett., 2012, 101, 073303.
75. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang and C. S. Hsu, J. Am. Chem. Soc., 2010, 132, 4887-4893.
76. Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip and S. W. Tsang, ACS Appl. Mater. Interfaces, 2015, 7, 19986-19993.
77. X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong and G. E. Jabbour, Org. Electron., 2014, 15, 2387-2394.
78. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano and H. Li, Science, 2012, 336, 327-332.
79. B. A. E. Courtright and S. A. Jenekhe, ACS Appl. Mater. Interfaces, 2015, 7, 26167-26175.
80. S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, Adv. Mater., 2013, 25, 4766-4771.
81. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang and Y. Dai, ACS Appl. Mater. Interfaces, 2012, 4, 4024-4030.
82. H. Kozuka, S. Takenaka, H. Tokita and M. Okubayashi, J. Eur. Ceram. Soc., 2004, 24, 1585-1588.
83. X. Yu, X. Yu, J. Zhang, D. Zhang, H. Caib and Y. Zhaob, RSC Adv., 2015, 5, 58966-58972.
84. B. H. Jiang, Y. J. Peng and C. P. Chen, J. Mater. Chem. A, 2017, 5, 10424-10429.
85. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, J. Mater. Chem. A, 2013, 1, 2582-2587.
86. T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv. Mater., 2010, 22, 1196-1221.
87. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, J. Mater. Chem. A, 2015, 3, 10660-10665.
88. X. Ouyang, R. Peng, L. Ai, X. Zhang and Z. Ge, Nat. Photonics, 2015, 9, 520-524.
89. L. Nian, W. Zhang, S. Wu, L. Qin, L. Liu, Z. Xie, H. Wu and Y. Ma, ACS Appl. Mater. Interfaces, 2015, 7, 25821-25827.
90. S. Bai, Y. Jin, X. Liang, Z. Ye, Z. Wu, B. Sun, Z. Ma, Z. Tang, J. Wang, U. Würfel, F. Gao and F. Zhang, Adv. Energy Mater., 2015, 5, 1401606.
91. X. Liu, L. Chen, L. Hu and Y. Chen, J. Phys. Chem. C, 2015, 119, 25887-25897.
92. C. Goh, S. R. Scully and M. D. McGehee, J. Appl. Phys., 2007, 101, 114503.
93. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Adv. Mater., 2008, 20, 2376-2382.
94. S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, J. Mater. Chem., 2008, 18, 5113-5119.
95. N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely and H. J. Snaith, ACS Nano, 2014, 8, 9815-9821.
96. W. Xiang, Q. Chen, Y. Wang, M. Liu, F. Huang, T. Bu, T. Wang, Y. B. Cheng, X. Gong, J. Zhong, P. Liu, X. Yao and X. Zhaoa, J. Mater. Chem. A, 2017, 5, 5486-5494.
97. J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li and S. Yang, Mater. Chem. Front., 2017, 1, 802-806.
98. M. Sun, F. Zhang, H. Liu, X. Li, Y. Xiaoab and S. Wang, J. Mater. Chem. A, 2017, 5, 13448-13456.
99. B. R. Lee, S. Lee, J. H. Park, E. D. Jung, J. C. Yu, Y. S. Nam, J. Heo, J. Y. Kim, B. S. Kim and M. H. Song, Adv. Mater., 2015, 27, 3553-3559.
100. E. J. Lee, S. W. Heo, Y. W. Hana and D. K. Moon, J. Mater. Chem. C, 2016, 4, 2463-2469.
101. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B. R. Cuenya and H. Heinrich, Appl. Surf. Sci., 2010, 256, 1895-1907.
102. E. Polydorou, I. Sakellis, A. Soultati, A. Kaltzoglou, T. A. Papadopoulos, J. Briscoe, D. Tsikritzis, M. Fakis, L. C. Palilis, S. Kennou, P. Argitis, P. Falaras, D. Davazoglou and M. Vasilopoulou, Nano Energy, 2017, 34, 500-514.
103. T. Hu, F. Li, K. Yuan and Y. Chen, ACS Appl. Mater. Interfaces, 2013, 5, 5763-5770.
104. C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao and B. Xu, J. Phys. Chem. C, 2017, 121, 6546-6553.
校內:2023-07-18公開