簡易檢索 / 詳目顯示

研究生: 曾士維
Zeng, Shi-Wei
論文名稱: 使用估計值於球體解碼之正交振幅調變研究
Quadrature Amplitude Modulation with Estimated Soft Values for the Sphere Decoding
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 40
中文關鍵詞: 多重輸入多重輸出球體解碼樹狀搜尋正交振幅調變
外文關鍵詞: MIMO, Sphere, decoding, Tree search, Quadrature Amplitude Modulation
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,隨著科技進步,大量資料傳輸需求增加,原本受限於空間多工技術的多重輸入多重輸出突破空間的侷限,利用多路徑增加吞吐量。球體解碼演算法雖然提供樹狀搜尋的方法得到最大概似解,但在低訊號雜訊比的複雜度仍然很高。
    在本論文中,一開始 我們會先介紹球體解碼跟不同樹狀搜尋的球體解碼。之後,我們會介紹一個根據估計值選擇搜尋路徑的演算法用於多重輸入多重輸出系統,並在不同的正交振幅調變觀察複雜度與錯誤率的變化。最後,我們結合適應性的概念,在低訊號雜訊比的時候選擇較少的搜尋路徑演算,在高訊號雜訊比的時候選擇較多的搜尋路徑,權衡搜尋的路徑數量來達到損耗少部分錯誤率降低複雜度的方法。

    In recent years, with the progress of science and technology, the need of a large number of data transmission is on the increasing. Originally limited by the space, the multiplexing multiple input multiple output (MIMO) system makes breakthrough the space limitation and increases the transmission throughput. Although the sphere decoding (SD) algorithm provides the optimal maximum-likelihood solution based on the tree search, the complexity of the SD algorithm at the low signal-to-noise ratio (SNR) is quite high. In this thesis, we consider the SD algorithm and the related different tree search methods. Then, we give an algorithm based on the estimated search path for the MIMO system, and observe the change in the complexity and bit-error rate (BER) for different constellations of quadrature amplitude modulation (QAM). Finally, we apply the concept of adaptation, which we choose fewer searching paths at the low signal noise ratio (SNR) and more searching paths at the high SNR. Our method provides a trade-off between the complexity and performance. We can reduce the number of searching paths to reduce the complexity with a small loss of BER.

    Content 中文摘要 I Abstract II 誌謝 III List of figures VI Chapter 1 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the thesis 2 Chapter 2 3 General Detectors for MIMO System 3 2.1 System model 3 2.2 Maximum-likelihood detection 4 2.3 Zero-forcing detection 5 2.4 Minimum mean-square error detection 6 Chapter 3 9 Introduction to Sphere Decoding 9 3.1 Sphere Decoding 9 3.2 Tree Search for Sphere Decoding 14 3.2.1 Breath-First Search 15 3.2.2 Best-First Search 16 3.3 Simulation Result 18 Chapter 4 20 Sphere Decoding for Quadrature Amplitude Modulation (QAM) 20 4.1 The estimated softs for tree search 20 4.1.1 Introduction to Estimated Softs 20 4.1.2 The estimated soft values with breadth-first search 23 4.1.3 The estimated soft values with best-first search 26 4.1.4 QPSK (4QAM) 28 4.1.5 16QAM 30 4.1.6 64QAM 32 4.2 Adaptive Method 34 Chapter 5 38 Conclusion 38

    [1]B. Hassibi and H. Vikalo. On the sphere-decoding algorithm i. expected complexity. IEEE Trans. Signal Process., 53:2806-2818, 2005.
    [2]E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE Trans. Inform. Theory, 45:1639-1642, 1999.
    [3]S. M. Alamouti. A simple transmit diversity technique for wireless communication. IEEE J. Select Areas Comm., 16:1451-1458, 1998.
    [4]S. Da-shan P.J. Smith D. Gesbert, M. Shafi and A. Naguib. From theory to practice: an overview of mimio space-time coded wireless systems. IEEE J. Select Areas Comm., 21:281-302,2003.
    [5]G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun., 6:311-335, 1998.
    [6]Y. Huang J. Benesty and J. Chen. A fast recursive algorithm for optimum sequen- tial signal detection in blast system. IEEE Trans. Signal Process., 51:1722-1731,2003.
    [7]S. M. Razavizadeh, V. T. Vakili and P. Azmi, “A new faster sphere decoder for MIMO systems,” in Proc. the 3^rd IEEE International Symposium on Signal Processing and Information Technology, pp.86~89, 2003.
    [8]B. Hassibi and H. Vikalo. On the sphere-decoding algorithm i. expected complexity. IEEE Trans. Signal Process., 53:2806-2818, 2005.
    [9]H. E1 Gamal M. O. Damen and G. Caire. On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans. Inf. Theory, 49:2389-2402, 2003.
    [10]Ming-Xian Chang and Wang-Yueh Chang. Efficient Detection for MIMO Systems Based on Gradient Search. IEEE Trans. on Vehicular Technology, pp.10057~10063, 2016.
    [11]Ming-Xian Chang and Wang-Yueh Chang. Maximum-Likelihood Detection for MIMO Systems Based on Differential Metrics. IEEE Trans. on Signal Processing, pp.3718~3712, 2017.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE