簡易檢索 / 詳目顯示

研究生: 蕭延益
Hsiao, Yan-Yi
論文名稱: 利用高頻超音波彈性影像評估人類手指肌腱特性
Evaluating the properties of human finger tendon by using high frequency ultrasonic elastography
指導教授: 黃執中
Huang, Chih-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 49
中文關鍵詞: 超音波系統瞬時彈性成像剪切波速
外文關鍵詞: Ultrasound, Transient elastography, Shear wave velocity
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 青少年為手部受傷的主要族群,原因多源自於運動及職業傷害,受傷部位多以手指區域損傷為主。常見手部損傷的治療方式為支架固定和長時間的靜養,手術多為重度損傷者所需,因此評估靜養後患部的功能性和恢復程度對於治療者、患者而言皆有一定必要性。傳統進行評估的方式不外乎為實際動作測試,請求患者進行特定動作的同時進行觀察各項表現例如力量大小、動作範圍、持續時間等。
    肌腱為手部受傷的主要部位,該損傷對手的功能性有著直接的影響。超音波彈性影像為一種廣泛用於測量軟組織機械特性的工具,在肌腱上亦有相關運用。相關研究已經將彈性影像用於測量運動狀態下的性能評估,觀察的目標多為較大的肌腱組織和易於測量的肌肉組織,在人體中相對細小的肌腱組織則較少討論。
    為了瞭解手部肌腱在不同運動情況下的機械特性,此研究將使用高頻超音波彈性影像測量手指伸肌腱於手背的部分之性質於不同運動狀態下性質表現和使用外部震盪器產生低頻組織震動和高頻超音波換能器與超快速超音波成像系統來測量受試者進行手指伸展和手指彎曲時不同力道下手指伸肌腱的機械性質變化。另外將對豬隻後腿肌腱使用同樣測量方式在其進行拉伸測試時測量其機械性質的變化,以作為其動作性質的參考。實驗結果顯示人類手指在進行兩種不同的動作時,施力大小與其剪力波行進速度呈現性關係,又以手指彎曲的整體表現較為優秀且與動物實驗結果較為相似。動物實驗中的剪力波波速和肌腱的應力大小也有相同結果。此研究結果可以做為一般人進行該動作的超音波表現數據,作為病人在復健過程中恢復程度的參考指標。

    Hand injuries mostly occur in youth group, usually resulted from exercise and working. The treatments of hand injury are usually the long-term rest with the fixation by splint except some acute injuries. To understand the effectiveness of therapy, evaluation of the hand functionality after resting is essential to the patient and therapist. Traditional way to evaluate the performance of the hand after injury is the motion test, patients perform a specific hand gesture to evaluate its performance like force value, range of motion, force duration etc.
    Ultrasound elastography has been a reliable way to acquire the mechanical property of soft tissue, so are tendons. Previous researches have been utilized this technique to access tissue properties in different statements of movement. However, these tissues are the muscle and tendon with larger thickness in human, less topics are focus on small tendon.
    Our study used high frequency ultrasound transducer and high frame rate ultrasound system to measure the shear wave velocity of the human digital extensor tendon in different movements and force value. Two movements of human finger are extension and flexion. We also measured the shear wave speed of porcine tendons during their tensile test as the reference of human test. External vibrator generated low frequency tissue vibration caused shear wave on the extensor tendon of human and the digital flexor tendon of porcine in our study. Results showed the linear relationship between the shear wave speed and stress of the tendon in animal test and the stress from loadcell reading in human test and animal experiment. The human result of finger flexion has less dispersion in data distribution and more likely to the animal result than finger extension. These results can be a reference to the patients for rehabilitation.

    Contents 摘要 III Abstract IV 誌謝 V Contents VI Tables VIII Figures IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Reviews 3 1.3 Motivations and Purpose 7 Chapter 2 Basic Theory 8 2.1 Ultrasound 8 2.1.1 Fundamental of Acoustic Wave 8 2.1.2 Stress and Strain Relationships 9 2.1.3 Compressional Wave and Shear Wave 10 2.1.4 Reflection and Refraction 12 2.2 Ultrasonic Imaging 14 2.2.1 A-Mode Imaging 15 2.2.2 B-Mode Imaging 15 2.2.3 M-Mode Imaging 16 2.3 Elasticity 17 2.3.1 Elastic Modulus 17 2.4 Ultrasound Elastography 20 2.4.1 Quasi-Static Method 20 2.4.2 Dynamic Method 20 Chapter 3 Materials and Methods 22 3.1 System Overview 22 3.2 Data Processing 25 3.2.1 IQ Data Acquisition and Displacement Calculation 25 3.2.2 Displacement Filtering 26 3.2.3 Phase Gradient Method 26 3.3 Animal Specimen Tensile Test 28 3.3.1 Animal Sample Preparation 28 3.3.2 Tensile Test Procedure 28 3.4 Human Active Force Measurement 30 Chapter 4 Results 32 4.1 Typical Result of the Ultrasound Imaging 32 4.2 Animal Experiment Results 34 4.3 Human Experiment Results 36 Chapter 5 Discussions 38 5.1 Velocity Range of Animal Tensile Test 38 5.2 Human Results Comparison 40 5.3 Stress Measurement in Human Experiments 40 5.4 About the Strain Measurement 41 5.5 Comparison to the Previous Research 42 Chapter 6 Conclusions 44 Chapter 7 Future Works 45 References 46

    [1] C. Hill, M. Riaz, A. Mozzam, and M. Brennen, "A regional audit of hand and wrist injuries: a study of 4873 injuries," Journal of Hand Surgery, vol. 23, no. 2, pp. 196-200, 1998.
    [2] K. R. Hanz, M. Saint-Cyr, M. J. Semmler, and R. J. Rohrich, "Extensor tendon injuries: acute management and secondary reconstruction," Plastic and reconstructive surgery, vol. 121, no. 3, pp. 109e-120e, 2008.
    [3] M. Nordin and V. H. Frankel, Basic biomechanics of the musculoskeletal system. Lippincott Williams & Wilkins, 2001.
    [4] R. J. DeWall, L. C. Slane, K. S. Lee, and D. G. Thelen, "Spatial variations in Achilles tendon shear wave speed," Journal of biomechanics, vol. 47, no. 11, pp. 2685-2692, 2014.
    [5] C. Helfenstein-Didier et al., "In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis," Physics in Medicine & Biology, vol. 61, no. 6, p. 2485, 2016.
    [6] S. F. Eby, P. Song, S. Chen, Q. Chen, J. F. Greenleaf, and K.-N. An, "Validation of shear wave elastography in skeletal muscle," Journal of biomechanics, vol. 46, no. 14, pp. 2381-2387, 2013.
    [7] T. K. Koo, J.-Y. Guo, J. H. Cohen, and K. J. Parker, "Relationship between shear elastic modulus and passive muscle force: an ex-vivo study," Journal of biomechanics, vol. 46, no. 12, pp. 2053-2059, 2013.
    [8] A. Nordez and F. Hug, "Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level," Journal of applied physiology, vol. 108, no. 5, pp. 1389-1394, 2010.
    [9] Z. J. Zhang and S. N. Fu, "Shear elastic modulus on patellar tendon captured from supersonic shear imaging: correlation with tangent traction modulus computed from material testing system and test–retest reliability," PloS one, vol. 8, no. 6, p. e68216, 2013.
    [10] F. Ateş et al., "Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity," Journal of Electromyography and Kinesiology, vol. 25, no. 4, pp. 703-708, 2015.
    [11] J. A. Martin et al., "Gauging force by tapping tendons," Nature communications, vol. 9, no. 1, p. 1592, 2018.
    [12] K. Kubo et al., "Ultrasound elastography for carpal tunnel pressure measurement: A cadaveric validation study," Journal of Orthopaedic Research®, vol. 36, no. 1, pp. 477-483, 2018.
    [13] Y.-S. Cheng et al., "Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography," Journal of biomechanics, vol. 74, pp. 197-201, 2018.
    [14] F. W. Kremkau and F. Forsberg, Sonography principles and instruments. Elsevier Health Sciences, 2015.
    [15] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements. CRC press, 2015.
    [16] J. F. Greenleaf, M. Fatemi, and M. Insana, "Selected methods for imaging elastic properties of biological tissues," Annual review of biomedical engineering, vol. 5, no. 1, pp. 57-78, 2003.
    [17] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrasonic imaging, vol. 13, no. 2, pp. 111-134, 1991.
    [18] J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: a new technique for soft tissue elasticity mapping," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 4, pp. 396-409, 2004.
    [19] J. Brum et al., "Application of 1-D transient elastography for the shear modulus assessment of thin-layered soft tissue: comparison with supersonic shear imaging technique," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 4, pp. 703-714, 2012.
    [20] K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," The Journal of the Acoustical Society of America, vol. 110, no. 1, pp. 625-634, 2001.
    [21] Y. Deng, N. C. Rouze, M. L. Palmeri, and K. R. Nightingale, "Ultrasonic shear wave elasticity imaging sequencing and data processing using a verasonics research scanner," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 1, pp. 164-176, 2016.
    [22] A. Viidik, "Functional properties of collagenous tissues," in International review of connective tissue research, vol. 6: Elsevier, 1973, pp. 127-215.
    [23] R. James, G. Kesturu, G. Balian, and A. B. Chhabra, "Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options," The Journal of hand surgery, vol. 33, no. 1, pp. 102-112, 2008.
    [24] K. Kitano, K. Tada, T. Shibata, and T. Yoshida, "Independent index extension after indicis proprius transfer: excision of juncturae tendinum," The Journal of hand surgery, vol. 21, no. 6, pp. 992-996, 1996.
    [25] H. Screen, D. Bader, D. Lee, and J. Shelton, "Local strain measurement within tendon," Strain, vol. 40, no. 4, pp. 157-163, 2004.
    [26] L. A. Chernak and D. G. Thelen, "Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography," Journal of biomechanics, vol. 45, no. 15, pp. 2618-2623, 2012.
    [27] S. R. Freitas, R. J. Andrade, L. Larcoupaille, P. Mil-homens, and A. Nordez, "Muscle and joint responses during and after static stretching performed at different intensities," European journal of applied physiology, vol. 115, no. 6, pp. 1263-1272, 2015.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE