| 研究生: |
劉昱宏 Liu, Yu-Hung |
|---|---|
| 論文名稱: |
利用分子束磊晶成長拓樸絕緣體鉍化硒參雜銻薄膜之特性分析與場效之研究應用 MBE Growth and Characterization of Sb-doped Bi2Se3 Topological Insulator Films and Application for Field Effect Transistor |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 拓樸絕緣體 、超薄膜 、MBE 、場效 |
| 外文關鍵詞: | Topological Insulator, MBE, Ultrathin Film, Field Effect Transistor |
| 相關次數: | 點閱:105 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文中我們利用分子束磊晶(MBE)發展了一系列的三維拓樸絕緣體硒化鉍Bi2Se3的薄膜,為了使其有應用價值並能與業界接軌,首先我們在矽基板上的二氧化矽上面成長該系列薄膜並且調控厚度以及給予不同閘極偏壓,測量其電性,接著由於維拓樸絕緣體硒化鉍(Bi2Se3)系統中,由於硒本身在這材料裡容易形成空缺缺陷,造成硒化鉍本質上載子濃度與費米能階偏高而不易觀察到表面態行為。第二部分為了研究表面態,我們為了調降載子濃度參雜了鍗(Sb)這個元素進入硒化鉍,並且測量其電性以及角分辨光電子能譜(ARPES)依舊觀察的到拓譜絕緣體的表面態而且可使得費米能階以及載子濃度都大幅度下降,除了可以藉由參雜調降雜子濃度以外,降低薄膜厚度也是可以使得表面態更為明顯,最後部分,我們結合第一部份的元件技術,以及第二部分的材料調整,我們成功的在藍寶石(Al2O3)與鈦酸鍶(STO)基板上成長了參雜鍗的硒化鉍以外,我們更調降了薄膜的厚度,使其表面態行為更加顯著,在藍寶石基板上我們量測簡單的電性,在鈦酸鍶基板則是利用背閘極偏壓的改變研究載子傳輸性質。在超薄的薄膜底下其場效的影響更為明顯,可以觀察其電阻的開關效應差異比例約是25000%,主要原因是來自於偏壓可使得費米面落在超薄薄膜的表面能隙之中,並且在偏壓的調控底下BSS薄膜可以得到一個拓樸相變的轉化,在傳統絕緣體跟拓譜絕緣體中調控得到非常大開關效應,這個調控的機制 在未來就有機會可以做一個SPIN-FET 的發展!
In this thesis, I will report the use of molecular beam epitaxy (MBE) for developing a series of Bi2Se3-based three-dimensional topological insulator (TI) thin film. In order to integrate TI into existing MOSFET technologies, I first demonstrated the growth of Bi2Se3 on the amorphous SiO2/Si substrate with high crystalline quality. In this system, large modulation of the gate-tuning coherent transport has been observed, suggesting it could be a novel template for electric field control TI-based spintronic devices. On the other hand, the major challenge of using Bi2Se3 for device application is the high bulk carrier concentration due to the selenium vacancies that exits as the native defects. Such a high bulk carrier concentration would overwhelm the topological surface state conduction. Here, in the second part, I will show by doping Sb into Bi2Se3, we manage to lower the Fermi level, EF down below conduction band edge. Despite the introduction of disorder in the doped Bi2Se3, the ternary (Bi1-xSbx)2Se3 (BSS) exhibits clear TSS with enhanced surface state conduction, as evidenced from the angle resolved photoemission spectroscopy (ARPES) and transport measurement, respectively. In addition to reduce the EF by impurity doping, reducing the thickness of the film is also another way to enhance the surface conduction contribution owing to larger surface-to-bulk volume ratio. In third part, I will demonstrate the synthesis of ultrathin (Bi1-xSbx)2Se3 films on sapphire (Al2O3) and strontium titanate (STO) substrates. Electrical transport and field-effect properties have been studied systematically. By using STO as back gate oxide, a very large ON/OFF ratio of 25000% was obtained for a 5 nm BSS FET device. We attribute such a high ON/OFF to the combined effect of Sb doping and the ultrathin thickness. A gate-tunable transport scheme that is based on this ultrathin Sb-doped Bi2Se3 is proposed for future use in large-field-effect spin transistors, where the crossover of the transport phenomena serves as the ingredient for the ON and OFF states of the channel spin polarization.
CH1
[1] NakaharaM.Geometry, TopologyandPhysics.Bristol:Adam Hilger,1990
[2] Thouless, D. J., Kohmoto, M., Nightingale, M. P., & Den Nijs, M. (1982). Quantized Hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49(6), 405.WenXG.AdvancesinPhysics,1995,44(5):405
[3] KlitzingKV,DordaG,PepperM.Phys.Rev.Lett.,1980, 45(6):494
[4] KaneC L,MeleEJ.Phys.Rev.Lett.,2005,95(14): 146802
[5] Kane, C. L., & Mele, E. J. (2005). Quantum spin Hall effect in graphene. Physical review letters, 95(22), 226801.
[6] B. A. Bernevig, T. A. Hughes, S. C. Zhang, Science 314, 1757 (2006).
[7] M. K¨onig, S. Wiedmann, C. Brne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S. 8 C. Zhang, Science 318, 766 (2007).
[8] L. Fu, C. L. Kane, E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[9] S. Murakami, New J. Phys. 9, 356 (2007).
[10] H. J. Zhang, C. X. Liu, X. L. Qi, X. Y. Deng, X. Dai, S. C. Zhang, Z. Fang, Phys. Rev. B 80, 085307 (2009)
[11] H. J. Zhang et al., Nature Phys. 5, 438 (2009).
[12] Y. Xia et al., Nature Phys. 5, 398 (2009).
[13] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen, Science 325, 178 (2009).
[14] C. H. Li,O. M. J. van ‘t Erve, J. T. Robinson, Y. Liu,L. Li & B. T. Jonker Nature Nanotechnology 9, 218–224 (2014)
[15] X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
[16] J. Chen et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys. Rev. Lett. 105, 176602 (2010).
[17] J. G. Checkelsky et al. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 106, 196801 (2011).
[18] Y. S. Kim et al. Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3. Phys. Rev. B 84, 073109 (2011).
[19] S. Hikami, A. I. Larkin and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63, 707 (1980).
[20] J. Tian et al. Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate tunable bulk and surface Conduction. Sci. Rep. 4, 4859 (2014).
[21] Z. H. Wang et al. Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 14, 6510 (2014).
[22] Xiao-Liang Qi Shou-Cheng Zhang REVIEWS OF MODERN PHYSICS, VOLUME 83 (2011) 10.1103/RevModPhys.83.1057
[23] Liang He, Xufeng Kou, and Kang L. Wang Phys. Status Solidi RRL 7, No. 1–2 (2013)
[24] Haijun Zhang1, Chao-Xing Liu2, Xiao-Liang Qi3, Xi Dai1, Zhong Fang1 & Shou-Cheng Zhang Nature Physics 5, 438 - 442 (2009)
[25] A. Koma, Surf. Sci. 267(1–3), 29 (1992).
[26] A. Koma, Thin Solid Films 216(1), 72 (1992)
[27] L. He, F. Xiu, X. Yu, M. Teague, W. Jiang, Y. Fan, X. Kou, M. Lang, Y. Wang, G. Huang, N.-C. Yeh, and K. L. Wang, Nano Lett. 12(3), 1486 (2012).
[28] G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, Appl. Phys. Lett. 95(5), 053114 (2009).
[29] T. Hirahara, Y. Sakamoto, Y. Takeichi, H. Miyazaki, S.-I. Kimura, I. Matsuda, A. Kakizaki, and S. Hasegawa, Phys. Rev. B 82(15), 155309 (2010).
[30] H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12(10), 103038 (2010).
[31] Y.-Y. Li, G. Wang, X.-G. Zhu, M.-H. Liu, C. Ye, X. Chen, Y.-Y. Wang, K. He, L.-L. Wang, X.-C. Ma, H.-J. Zhang, X. Dai, Z. Fang, X.-C. Xie, Y. Liu, X.-L. Qi, J.-F. Jia, S.-C. Zhang, and Q.-K. Xue, Adv. Mater. 22(36), 4002 (2010).
[32] L. He, F. Xiu, Y. Wang, A. V. Fedorov, G. Huang, X. Kou, M. Lang, W. P. Beyermann, J. Zou, and K. L. Wang, J. Appl. Phys. 109, 103702 (2011).
[33] M. Lang, L. He, F. Xiu, X. Yu, J. Tang, Y. Wang, X. Kou, W. Jiang, A. V. Fedorov, and K. L. Wang, ACS Nano 6(1), 295 (2012).
[34] X. F. Kou, L. He, F. X. Xiu, M. R. Lang, Z. M. Liao, Y. Wang, A. V. Fedorov, X. X. Yu, J. S. Tang, G. Huang, X. W. Jiang, J. F. Zhu, J. Zou, and K. L. Wang, Appl. Phys. Lett. 98, 242102 (2011).
[35] N. Bansal, Y. S. Kim, E. Edrey, M. Brahlek, Y. Horibe, K. Iida, M. Tanimura, G.-H. Li, T. Feng, H.-D. Lee, T. Gustafsson, E. Andrei, and S. Oh, Thin Solid Films 520(1), 224 (2011).
[36] D. Kong and Y. Cui, Nat. Chem. 3, 845 (2011).
[37] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82(4), 3045 (2010).
[38] J. E. Moore, Nature 464(7286), 194 (2010).
[39] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[40] C. H. Li, O. M. J. van ’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Nat. Nanotechnol. 9, 218 (2014).
[41] J. Tang, L. T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang, Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He, and K. L. Wang, Nano Lett. 14, 5423 (2014).
[42] Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S.Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Nano Lett. 14, 6226 (2014).
[43] D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).
[44] D. Kong, K. J. Koski, J. J. Cha, S. S. Hong, and Y. Cui, Nano Lett. 13, 632(2013).
[45] S. Cho, N. P. Butch, J. Paglione, and M. S. Fuhrer, Nano Lett. 11, 1925 (2011).
[46] S. P. Chiu and J. J. Lin, Phys. Rev. B 87, 035122 (2013).
[47] B. Xia, P. Ren, A. Sulaev, P. Liu, S. Q. Shen, and L. Wang, Phys. Rev. B 87, 085442 (2013).
[48] H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
[49] L. He, F. Xiu, X. Yu, M. Teague, W. Jiang, Y. Fan, X. Kou, M. Lang, Y. Wang, G. Huang, N. C. Yeh, and K. L. Wang, Nano Lett. 12, 1486 (2012).
[50] S. S. Hong, J. J. Cha, D. Kong, and Y. Cui, Nat. Commun. 3, 757 (2012). 17K. Segawa, Z. Ren, S. Sasaki, T. Tsuda, S. Kuwabata, and Y. Ando, Phys.Rev. B 86, 075306 (2012).
[51] K. Segawa, Z. Ren, S. Sasaki, T. Tsuda, S. Kuwabata, and Y. Ando, Phys. Rev. B 86, 075306 (2012).
[52] J. Xiong, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, Phys. Rev. B 88, 035128 (2013).
[53] W. M. Yang, C. J. Lin, J. Liao, and Y. Q. Li, Chin. Phys. B 22(9), 097202 (2013).
[54] C. Z. Chang, Z. Zhang, K. Li, X. Feng, J. Zhang, M. Guo, Y. Feng, J. Wang, L. L. Wang, X. C. Ma, X. Chen, Y. Wang, K. He, and Q. K. Xue, Nano Lett. 15(2), 1090 (2015).
[55] S. K. Jerng, K. Joo, Y. Kim, S. M. Yoon, J. H. Lee, M. Kim, J. S. Kim, E. Yoon, S. H. Chun, and Y. S. Kim, Nanoscale 5, 10618 (2013).
[56] N. Bansal, N. Koirala, M. Brahlek, M. G. Han, Y. Zhu, Y. Cao, J. Waugh,D. S. Dessau, and S. Oh, Appl. Phys. Lett. 104, 241606 (2014).
[57] N. Bansal, Y.-S. Kim, M. Brahlek, E. Edrey, and S. Oh, Phys. Rev. Lett. 109, 116804 (2012).
[58] Jifa Tian, Cuizu Chang, Helin Cao, Ke He, Xucun Ma, Qikun Xue & Yong P. Chen Sci. Rep. 4, 4859 (2014) doi:10.1038/srep04859
[59] J. Zhang et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Comm. 2, 574 (2011).
[60] L. Xue et al. First-principles study of native point defects in Bi2Se3. AIP Adv. 3, 052105 (2013).
[61] S. Cho et al. Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75, 1401 (1999)
[62] N. J. G. Gouto et al. Transport through Graphene on SrTiO3. Phys. Rev. Lett. 107, 225501 (2011).
[63] A. A. Abrikosov. Quantum linear magnetoresistance. Europhys. Lett. 49, 789 (2000).
[64] C. M. Wang, & X. L. Lei. Linear magnetoresistance on the topological surface. Phys. Rev. B 86, 035442 (2012).
[65] Y. Watanabe, S. Kaneko, H. Kawazoe, and M. Yamane, Phys. Rev. B 40, 3133 (1989).
[66] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[67] Matthew Brahlek,1 Namrata Bansal,2 Nikesh Koirala,1 Su-Yang Xu,3 Madhab Neupane,3 Chang Liu,3 M. Zahid Hasan,3 and Seongshik Oh1,* PRL 109, 186403 (2012)
[68] A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).
[69] J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 80, 205401 (2009)
[70] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nature Phys. 6, 584 (2010)
CH4
[1] L. He, X. Kou, and K. L. Wang, Phys. Status Solidi RRL 7(1–2), 50 (2013).
[2] D. Kong and Y. Cui, Nat. Chem. 3, 845 (2011).
[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82(4), 3045 (2010).
[4] J. E. Moore, Nature 464(7286), 194 (2010).
[5] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[6] C. H. Li, O. M. J. van ’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Nat. Nanotechnol. 9, 218 (2014).
[7] J. Tang, L. T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang, Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He, and K. L. Wang, Nano Lett. 14, 5423 (2014).
[8] Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S.Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Nano Lett. 14, 6226 (2014).
[9] D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).
[10] D. Kong, K. J. Koski, J. J. Cha, S. S. Hong, and Y. Cui, Nano Lett. 13, 632
(2013).
[11] S. Cho, N. P. Butch, J. Paglione, and M. S. Fuhrer, Nano Lett. 11, 1925 (2011).
[12] S. P. Chiu and J. J. Lin, Phys. Rev. B 87, 035122 (2013).
[13] B. Xia, P. Ren, A. Sulaev, P. Liu, S. Q. Shen, and L. Wang, Phys. Rev. B 87, 085442 (2013).
[14] H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo-Herrero, Nano Lett. 10, 5032 (2010).
[15] L. He, F. Xiu, X. Yu, M. Teague, W. Jiang, Y. Fan, X. Kou, M. Lang, Y. Wang, G. Huang, N. C. Yeh, and K. L. Wang, Nano Lett. 12, 1486 (2012).
[16] S. S. Hong, J. J. Cha, D. Kong, and Y. Cui, Nat. Commun. 3, 757 (2012). 17K. Segawa, Z. Ren, S. Sasaki, T. Tsuda, S. Kuwabata, and Y. Ando, Phys.
Rev. B 86, 075306 (2012).
[17] K. Segawa, Z. Ren, S. Sasaki, T. Tsuda, S. Kuwabata, and Y. Ando, Phys. Rev. B 86, 075306 (2012)
[18] J. Xiong, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, Phys. Rev. B 88, 035128 (2013).
[19] W. M. Yang, C. J. Lin, J. Liao, and Y. Q. Li, Chin. Phys. B 22(9), 097202 (2013).
[20] C. Z. Chang, Z. Zhang, K. Li, X. Feng, J. Zhang, M. Guo, Y. Feng, J. Wang, L. L. Wang, X. C. Ma, X. Chen, Y. Wang, K. He, and Q. K. Xue, Nano Lett. 15(2), 1090 (2015).
[21] S. K. Jerng, K. Joo, Y. Kim, S. M. Yoon, J. H. Lee, M. Kim, J. S. Kim, E. Yoon, S. H. Chun, and Y. S. Kim, Nanoscale 5, 10618 (2013).
[22] N. Bansal, N. Koirala, M. Brahlek, M. G. Han, Y. Zhu, Y. Cao, J. Waugh,D. S. Dessau, and S. Oh, Appl. Phys. Lett. 104, 241606 (2014).
[23] See supplementary material at http://dx.doi.org/10.1063/1.4926624 for ESD measurement (Fig. 4. S1), AFM image (Fig. 4. S2), and temperaturedependent sheet resistance (Fig. 4. S3).
[24] Y. S. Kim, M. Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich, K. Iida, M.Tanimura, Y. Horibe, S. W. Cheong, and S. Oh, Phys. Rev. B 84, 073109 (2011).
[25] D. Kim, P. Syers, N. P. Butch, J. Paglione, and M. S. Fuhrer, Nat. Commun. 4, 2040 (2013).
[26] H. Steinberg, J.-B. Lalo€e, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 233101 (2011).
[27] J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010). [28] M. Lang, L. He, X. Kou, P. Upadhyaya, Y. Fan, H. Chu, Y. Jiang, J. H. Bardarson, W. Jiang, E. S. Choi, Y. Wang, N. C. Yeh, J. Moore, and K. L. Wang, Nano Lett. 13, 48 (2013).
[29] M. Brahlek, N. Koirala, M. Salehi, N. Bansal, and S. Oh, Phys. Rev. Lett. 113, 026801 (2014).
[30] J. Tian, C. Chang, H. Cao, K. He, X. Ma, Q. Xue, and Y. P. Chen, Sci. Rep. 4, 4859 (2014).
[31] J. Liao, Y. Ou, X. Feng, S. Yang, C. Lin, W. Yang, K. Wu, K. He, X. Ma, Q. Xue, and Y. Li, Phys. Rev. Lett. 114, 21660 (2015).
[32] M. Brahlek, N. Koirala, N. Bansal, and S. Oh, Solid State Commun. 215–216, 54 (2014).
[33] A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 109, 066803 (2012).
[34] Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phys. 6, 584 (2010).
[35] M. Neupane, A. Richardella, J. Sanchez-Barriga, S. Y. Xu, N. Alidoust, I. Belopolski, C. Liu, G. Bian, D. Zhang, D. Marchenko, A. Varykhalov, O. Rader, M. Leandersson, T. Balasubramanian, T.-R. Chang, H.-T. Jeng, S. Basak, H. Lin, A. Bansil, N. Samarth, and M. Z. Hasan, Nat. Commun. 5, 3841 (2014).
CH5
[1] L. He, X. Kou, K. L. Wang, Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications, Phys. Status Solidi RRL 7, No. 1-2 (2013) 50-63.
[2] D. Kong, Y. Cui, Opportunities in chemistry and materials science for topological insulators and their nanostructures, Nat. Chem. 3 (2011) 845-849.
[3] M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (4) (2010) 3045-3067.
[4] J. E. Moore, The birth of topological insulators, Nature 464 (7286) (2010) 194-198.
[5] X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (4) (2011) 1057-1110.
[6] C. H. Li, O. M. J. van ‘t Erve, J. T. Robinson, Y. Liu, L. Li, B. T. Jonker, Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotech. 9 (2014) 218-224.
[7] J. Tang, L. T. Chang, X. Kou, K. Murata, E. S. Choi, M. Lang, Y. Fan, Y. Jiang, M. Montazeri, W. Jiang, Y. Wang, L. He, K. L. Wang, Electrical detection of spin-polarized surface states conduction in (Bi0.53Sb0.47)2Te3 topological insulator, Nano Lett. 14 (2014) 5423-5429.
[8] A. Dankert, J. Geurs, M. V. Kamalakar, S. Charpentier, S. P. Dash, Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators, Nano Lett. 15, (2015) 7976−7981.
[9] J. S. Lee, A. Richardella, D. R. Hickey, K. A. Mkhoyan, N. Samarth, Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator, Phys. Rev. B 92 (2015) 155312.
[10] F. Yang, S. Ghatak, A. A. Taskin, K. Segawa, Y. Ando, M. Shiraishi, Y. Kanai, K. Matsumoto, A. Rosch, Y. Ando, Switching of charge-current-induced spin polarization in the topological insulator BiSbTeSe2, Phys. Rev. B 94 (2016) 075304.
[11] J. G. Checkelsky, Y. S. Hor, R. J. Cava, N. P. Ong, Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3, Phys. Rev. Lett. 106 (2009) 196801.
[12] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, J. Paglione, Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals, Phys. Rev. B 81 (2010) 241301(R).
[13] A. A. Taskin, Y. Ando, Quantum oscillations in a topological insulator Bi1-xSbx, Phys. Rev. B 80 (2009) 085303.
[14] Y. H. Liu, C. W. Chong, J. L. Jheng, S. Y. Huang, J. C. A. Huang, Z. Li, H. Qiu, S. M. Huang, V. V. Marchenkov, Gate-tunable coherent transport in Se-capped Bi2Se3 grown on amorphous SiO2/Si, Appl. Phys. Lett. 107 (2015) 012106.
[15] J. Zhang, C. Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q. K. Xue, X. Ma, Y. Wang, Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators, Nat. Commun. (2011) DOI: 10.1038/ncomms1588.
[16] D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S.S. Hong, K. J. Koski, S. K. Mo, Z. Hussain, I. R. Fisher, Z.-X. Shen, Y.Cui, Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning, Nat. Nanotech. 6 (2011) 705-709.
[17] M. Neupane, A. Richardella, J. Sa´nchez-Barriga, S. Y. Xu, N. Alidoust, I. Belopolski, C. Liu, G. Bian, D. Zhang, D. Marchenko, A. Varykhalov, O. Rader, M. Leandersson, T. Balasubramanian, T. R. Chang, H. T. Jeng, S. Basak, H. Lin, A. Bansil, N. Samarth, M. Z. Hasan, Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films, Nat. Commun. (2014) DOI: 10.1038/ncomms4841.
[18] M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, S. Oh, Topological-Metal to Band-Insulator Transition in (Bi1-xInx)2Se3 Thin Films, Phys. Rev. Lett. 109 (2012) 186403.
[19] J. Liao, Y. Ou, X. Feng, S. Yang, C. Lin, W. Yang, K. Wu, K. He, X. Ma, Q. K. Xue, Y. Li, Observation of Anderson Localization in Ultrathin Films of Three-Dimensional Topological Insulators, Phys. Rev. Lett. 114 (2015) 216601.
[20] M. J. Brahlek, N. Koirala, J. Liu, T. I. Yusufaly, M. Salehi, M.-G. Han, Y. Zhu, D. Vanderbilt, S. Oh, Tunable inverse topological heterostructure utilizing (Bi1-xInx)2Se3 and multichannel weak-antilocalization effect, Phys. Rev. B 93 (2016) 125416.
[21] J. Liu, D. Vanderbilt, Topological phase transitions in (Bi1-xInx)2Se3 and (Bi1-xSbx)2Se3, Phys. Rev. B 88 (2013) 224202.
[22] C. Zhang, X. Yuan, K. Wang, Z. G. Chen, B. Cao, W. Wang, Y. Liu, J. Zou, F. Xiu, Observations of a Metal–Insulator Transition and Strong Surface States in Bi2–xSbxSe3 Thin Films, Adv. Mater. 26 (2014) 7110-7115.
[23] Y. Zhang, C. Z. Chang, K. He, L. L. Wang, X. Chen, J. F. Jia, X. C. Ma, Q. K. Xue, Doping effects of Sb and Pb in epitaxial topological insulator Bi2Se3 thin films: An in situ angle-resolved photoemission spectroscopy study, Appl. Phys. Lett. 97 (2010) 194102.
CH6
[1] Xu, S. Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; AndrewWray, L.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sánchez-Barriga, J.; Rader, O.; Landolt, G.; Slomski, B.; Dil, J. H.; Osterwalder, J.; Chang, T. R.; Jeng, H. T.; Lin, H.; Bansil, A.; Samarth, N. and Hasan, M. Z. Hedgehog Spin Texture and Berry’s Phase Tuning in a Magnetic Topological Insulator. Nat. Phys. 2012, 8, 616-622.
[2] Neupane, M.; Richardella, A.; Sa´nchez-Barriga, J.; Xu, S. Y.; Alidoust, N.; Belopolski, I.; Liu, C.; Bian, G.; Zhang, D.; Marchenko, D.; Varykhalov, A.; Rader, O.; Leandersson, M.; Balasubramanian, T.; Chang, T. R.; Jeng, H. T.; Basak, S.; Lin, H.; Bansil, A.; Samarth, N.; Hasan, M. Z. Observation of Quantum-Tunnelling-Modulated Spin Texture in Ultrathin Topological Insulator Bi2Se3 Films. Nat. Commun. 2014, DOI: 10.1038/ncomms4841.
[3] Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous Finite Size Effects on Surface States in the Topological Insulator Bi2Se3. Phys. Rev. B 2009, 80, 205401.
[4] Liu, C. X.; Zhang, H. J.; Yan, B.; Qi, X. L.; Frauenheim, T.; Dai, Xi; Fang, Zhong; Zhang, S. C. Oscillatory Crossover from Two-Dimensional to Three-Dimensional Topological Insulators. Phys. Rev. B 2010, 81, 041307R.
[5] Zhang, T.; Ha, J.; Levy, N.; Kuk, Y.; Stroscio, J. Electric-Field Tuning of the Surface Band Structure of Topological Insulator Sb2Te3 Thin Films. Phys. Rev. Lett. 2013, 111, 056803.
[6] Lang, M.; He, L.; Kou, X.; Upadhyaya, P.; Fan, Y.; Chu, H.; Jiang, Y.; Bardarson, J. H.; Jiang, W.; Choi, E. S.; Wang, Y.; Yeh, N. C.; Moore, J.; Wang, K. L. Competing Weak Localization and Weak Antilocalization in Ultrathin Topological Insulators. Nano Lett. 2013, 13, 48-53.
[7] Liao, J.; Ou, Y.; Feng, X.; Yang, S.; Lin, C.; Yang, W.; Wu, K.; He, K.; Ma, X.; Xue, Q. K.; Li, Y. Observation of Anderson Localization in Ultrathin Films of Three-Dimensional Topological Insulators. Phys. Rev. Lett. 2015, 114, 216601.
[8] Kong, D.; Chen, Y.; Cha, J. J.; Zhang, Q.; Analytis, J. G.; Lai, K.; Liu, Z.; Hong, S.S.; Koski, K. J.; Mo, S. K.; Hussain, Z.; Fisher, I. R.; Shen, Z.-X.; Cui, Y. Ambipolar Field Effect in the Ternary Topological Insulator (BixSb1–x)2Te3 by Composition Tuning. Nat. Nanotechnol. 2011, 6, 705-709.
[9] Brahlek, M.; Bansal, N.; Koirala, N.; Xu, S. Y.; Neupane, M.; Liu, C.; Hasan M. Z.; Oh, S. Topological-Metal to Band-Insulator Transition in (Bi1-xInx)2Se3 Thin Films. Phys. Rev. Lett. 2012, 109, 186403.
[10] Salehi, M.; Shapourian, H.; Koirala, N.; Brahlek, M. J.; Moon, J.; Oh, S. Finite-Size and Composition-Driven Topological Phase Transition in (Bi1−xInx)2Se3 Thin Films. Nano Lett. 2016, 16, 5528-5532.
[11] Zhang, C.; Yuan, X.; Wang, K.; Chen, Z. G.; Cao, B.; Wang, W.; Liu, Y.; Zou, J.; Xiu, F. Observations of a Metal–Insulator Transition and Strong Surface States in Bi2-xSbx Se3 Thin Films. Adv. Mater. 2014, 26, 7110-7115.
[12] Liu, Y. H.; Chong, C. W.; Chen, W. C.; Huang, J. C. A.; Cheng, C.-M.; Tsuei, K.-D.; Li, Z.; Qiu, H.; Marchenkov, V.V. Robust Topological Insulator Surface State in MBE Grown (Bi1-xSbx)2Se3. arXiv:1611.08395, 2016.
[13] Brahlek, M.; Koirala, N.; Bansal, N.; Oh, S. Transport Properties of Topological Insulators: Band Bending, Bulk Metal-to-Insulator Transition, and Weak Anti-localization. Solid State Commun. 2015, 215-216, 54-62.
[14] Liu, Y. H.; Chong, C. W.; Jheng, J. L.; Huang, S. Y.; Huang, J. C. A.; Li, Z.; Qiu, H.; Huang, S. M.; Marchenkov, V. V. Gate-Tunable Coherent Transport in Se-capped Bi2Se3 Grown on Amorphous SiO2/Si. Appl. Phys. Lett. 2015, 107, 012106.
[15] Sachs, R.; Lin, Z.; Shi, Jing. Ferroelectric-like SrTiO3 Surface Dipoles Probed by Graphene. Sci. Rep. 2014, 4: 3657 | DOI: 10.1038/srep03657.
[16] Cho, S.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano Lett., 2011, 11 (5), 1925-1927.
[17] Zhang, Yi; He, Ke; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, Xi; Jia, Jin-Feng; Fang, Zhong; Dai, Xi; Shan, W. Y.; Shen, S. Q.; Niu, Qian; Qi, X. L.; Zhang, S. C.; Ma, X. C.; and Xue, Q. K. Crossover of the Three-dimensional Topological Insulator Bi2Se3 to the Two-dimensional limit. Nat. Phys. 2010, 6, 584-588.
[18] Kim, D.; Syers, P; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Coherent Topological Transport on the Surface of Bi2Se3. Nat. Commun. 2013, 4:2040 | DOI: 10.1038/ncomms3040.
[19] Liu, J.; Vanderbilt, D. Topological Phase Transitions in (Bi1-xInx)2Se3 and (Bi1-xSbx)2Se3. Phys. Rev. B 2013, 88, 224202.