簡易檢索 / 詳目顯示

研究生: 黃永政
Huang, Yun-Cheng
論文名稱: 機器手臂之適應性模糊終端滑模控制器之研究
Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 65
中文關鍵詞: 終端滑模機器手臂
外文關鍵詞: terminal sliding, manipulator
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出以適應性模糊終端滑模控制器用於機器手臂之設計方法,此控制方法在無法得知受控系統參數情形下,仍可保證閉迴路控制系統穩定。終端滑模控制器優勢為可驅使系統追蹤誤差在有限時間內收斂為零、且閉迴路控制系統為無限穩定。適應性模糊終端滑模控制器結合了模糊終端滑模控制器及適應性結構,其設計仍保有終端滑模控制的優勢,且減緩了終端滑模控制的顫動現象。藉由李亞普諾夫(Lyapunov)穩定準則導出之適應性法則,可調整模糊控制器之輸出正規化係數及補償控制器之輸出量。如此,所提出的控制器於完全無系統參數狀況下,仍可驅使系統穩定或追蹤誤差收斂。模擬的結果顯示所提出的適應性模糊終端滑模控制器性能優於典型的適應性模糊滑模控制器。

      A new design approach of an adaptive fuzzy terminal sliding-mode controller (AFTSMC) for robotic manipulators is developed in this thesis. This control algorithm makes the closed-loop controlled system stable, although the detailed system parameters of the robot is unknown. The terminal sliding-mode controller (TSMC) is designed to drive the system tracking errors to reach and retain in the terminal sliding-mode, the system tracking error converges to zero in finite time and the closed-loop system is infinite stable. The AFTSMC, incorporating the fuzzy logic controller (FLC), the TSMC, and adaptive scheme, is designed to retain the advantages of the TSMC and to reduce the chattering. The adaptive law is designed based on the Lyapunov stability criterion. The normalization factor of output variable in the fuzzy mechanism and the output value of compensator are adapted on-line to improve the performance of the fuzzy terminal sliding-mode controller (FTSMC). Thus, it does not require the detailed system parameters for the presented AFTSMC. The simulation results demonstrate that the AFTSMC can provide much better tracking performance than that of the classical adaptive fuzzy sliding-mode controller (AFSMC).

    中文摘要 I Abstract II Acknowledgment III Contents IV List of Figure VI Abbreviations IX Chapter 1. Introduction .............................................1 Chapter 2. Model of Robotic Manipulators ...............................4 Chapter 3. Terminal Sliding-Mode Controller for Robotic Manipulator ... 7 3.1 TSMC for Robotic Manipulators ...............................8 3.1.1 Architecture of the TSMC ...................................8 3.1.2 Methodology of the TSMC .....................................9 3.2 Simulations .................................................17 3.3 Summary .....................................................27 Chapter 4. Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulator .............................................................28 4.1     FTSMC for Robotic Manipulators ..............................29 4.1.1 Architecture of FLC .........................................29 4.1.2 Methodology of the FTSMC ....................................31 4.2 Simulations .................................................36 4.3     Summary .....................................................45 Chapter 5. Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulator .................................................46 5.1 AFTSMC for Robotic Manipulators .............................47 5.2 Simulations .................................................51 5.3 Summary .....................................................58 Chapter 6. Conclusions .................................................59 References .............................................................61 Autobiography ...........................................................65

    References

    [1]J. Y. Hung, W. Gao, and J. C. Huang, “Variable structure control: a
    survey,” IEEE Trans. Ind. Electron., Vol. 40, NO. 1, pp. 2-22, Feb.1993.
    [2]W. Gao, and J. C. Hung, ” Variable Structure Control of Nonlinear Systems:
    A New Approach,” IEEE Trans. Indust. Electr.., Vol.40,NO. 1, pp. 45-55,
    Feb.1993.
    [3]K. S. Yeung, and Y. P. Chen, “A New Controller Design for Manipulators
    Using the Theory of Variable Structure Systems,” IEEE Trans. Auto. Contr.,
    Vol. 33, NO. 2, pp 200-206, Feb.1988.
    [4]L. C. Fu, and T. L. Liao, “Globally Stable Robust Tracking of Nonlinear
    Systems Using Variable Structure Control and with an Application to a
    Robotic Manipulator,” IEEE Trans. Auto. Contr., Vol. 35, NO. 12, pp. 1345-
    1350, Dec. 1990.
    [5]T. P. Leung, Q. J. Zhou, and C. Y. Su,” An Adaptive Variable Structure
    Model Following Control Design for Robot Manipulators,” IEEE Trans. Auto.
    Contr., Vol. 36, NO. 3, pp. 347-352, March 1991.
    [6]T. L.Chern, and Y. C. Wu, “Integral Variable Structure Control Approach
    for Robot Manipulators,” IEE Proceedings, Vol.139,NO.2,pp. 161-166, March.
    1992.
    [7]B. Yao, W. B. Gao, and M. Cheng, “VSC Coordinated Control of Two
    Manipulator Arms in the Presence of Environmental Constraints,” IEEE
    Trans. Auto. Contr., Vol. 37, NO. 11, pp. 1806-1812, Nov. 1992.
    [8]C. Y. Su, and T. P. Leung,”A Sliding Mode Controller with Bound Estimation
    for Robot Manipulators,” IEEE Trans. Robot. Auto., Vol.9, NO.2, pp. 208-
    214, April 1993.
    [9]E. M. Jafarov, M. N. A. Parlakci, and Y. Istefanopulos,” A New Variable
    Structure PID-Controller Design for Robot Manipulators,” IEEE Trans.
    Robot. Auto., Vol.9, NO.2, pp. 208-214, April 1993.
    [10]X. Yu, and M. Zhihong, “On Finite Time Mechanism: Terminal Sliding
    Modes,” IEEE Workshop on Variable Structure Systems, pp. 164-167, Aug.
    1996.
    [11]M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear
    systems,” IEEE Trans. Circ. Syst., Vol. 44, NO. 11, pp. 1065-1070,
    Nov.1997.
    [12]S. Yu, and X.Yu, “Robust Global Fast Terminal Sliding Mode Controller for
    Rigid Robotic Manipulators,” Proceeding of IEEE TENCON’02, pp. 1335-
    1338,2002.
    [13]H. Yu, and X. Yu, “Robust Global Terminal Sliding Mode Control of SISO
    Nonlinear Uncertain Systems,” Preceedings of the 39th IEEE Conference on
    Decision and Control Sydney, Australia, pp. 2198-2203,Dec. 2000.
    [14]Y. Wu, X. Yu, and Z. Man, “Terminal Sliding Mode Control Design for
    Uncertain Dynamic Systems,” ELSEVIER Systems & Control Letters, 34, pp.
    281-287, 1998.
    [15]D. Yue, S. Xu, and Y. Liu, ”Terminal Sliding Mode Control of High-Order
    Systems,” Proceeding of The IEEE International Conference on Industrial
    Technology, pp. 811-814, 1996.
    [16]M. Zhihong, A. P. Paplinski, and H. R. Wu, “A robust MIMO terminal
    sliding mode control scheme for rigid robotic manipulators,” IEEE Trans.
    Automat. Contr., Vol. 39, NO. 12, pp. 2464-2469, Dec. 1994.
    [17]X. H. Yu and M. Zhihong, “Fast terminal sliding-mode control design for
    nonlinear dynamical systems,” IEEE Trans. Circ. Sys., Vol. 49, NO. 2, pp.
    261-264, Feb. 2002.
    [18]Y. Feng, X. Yu, and Z. Man, “ Adaptive Fast Terminal Sliding Mode
    Tracking Control of Robotic Manipulator,” Proc. of the 40th IEEE
    Conference on Decision and Control, Florida, USA, pp. 4021-4026, Dec. 2001.
    [19]C.W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding
    mode controller for linear systems with mismatched time-varying
    uncertainties,” IEEE Trans. Sys. Man. Cyber., Vol. 34, NO. 1, pp. 255-
    262, Feb. 2004.
    [20]L. X. Wang, A course in fuzzy systems and control, Prentice Hall, NJ,
    1997.
    [21]J. Yen and R. Langari, Fuzzy logic intelligence, control, and information,
    Prentice Hall, NJ, 1999.
    [22]G. J. Klir, U. S. Clair, and B. Yuan, Fuzzy set theory foundations and
    applications, Prentice Hall, NJ, 1997.
    [23]S. Y. Yi, and M. J. Chung, “ A Robust Fuzzy Logic Controller for Robot
    Manipulators with Uncertainties,” IEEE Trans. Syst., Man, Cybern., Vol.
    27, NO. 4, pp. 706-713, Aug. 1997.
    [24]C. H. Tsai, C. H. Wang, and W. S. Lin, “ Robust Fuzzy Model-
    FollowingControl of Robot Manipulators,” IEEE Trans. Fuzzy Syst., Vol.8,
    NO. 4, pp. 462-469, Aug. 2000.
    [25]H. Lee, E. Kim, H. J. Kang, and M. Park,” Design of a Sliding Mode
    Controller with Fuzzy Sliding Surfaces,” IEE Proc. Control Theory Appl.,
    Vol. 145, NO.5, pp. 411-418, Sept. 1998.
    [26]J. H. Li, Design of Fuzzy Sliding-Mode Controllers and Their Applications
    to a class of Mechatronic Systems,Ph.D. Dissertation, National Cheng Kung
    University, 2003
    [27]Y. C. Hsu, G. Chen, and H. X. Li, “A fuzzy adaptive variable structure
    controller with applications to robotic manipulators,” IEEE Trans. Syst.,
    Man, Cybern., Vol.31, NO. 3, pp. 331-340, June 2001.
    [28]Y. Guo and P. Y. Woo, “An adaptive fuzzy sliding mode controller for
    robotic manipulators,” IEEE Trans. Syst., Man, Cybern., Vol. 33, NO. 2,
    pp. 149-159, March 2003.
    [29]S. Y. Yi and M. J. Chung, “A robust fuzzy logic controller for robot
    manipulators with uncertainties,” IEEE Trans. Syst., Man, Cybern., Vol.
    27, NO. 4, pp. 706-713, Aug. 1997.
    [30]F. C. Sun, Z. Q. Sun, and G. Feng, “An adaptive fuzzy controller based on
    sliding mode for robot manipulators,” IEEE Trans. Syst., Man Cyber., Vol.
    29, NO.4, pp. 661-667, Aug.1999.
    [31]B. K. Yoo and W. C. Ham, “Adaptive control of robot manipulator using
    fuzzy compensator,” IEEE Trans. Fuzzy Sys., Vol. 8, NO. 2, pp. 186-199,
    April 2000.
    [32]E. Kim, “Output feedback tracking control of robot manipulators with
    model uncertainty via adaptive fuzzy logic,” IEEE Trans. Fuzzy Syst. Vol.
    12, NO. 3, pp. 368-378, June 2004.
    [33]S. J. Huang, and J. S. Lee,” A Stable Self-Organizing Fuzzy Controller
    for Robotic Motion Control,” IEEE Trans. Indus. Electr. Vol. 47, NO. 2,
    pp. 421-428, April. 2000.
    [34]C. H. Tsai, C. H. Wang, and W. S. Lin,” Robust Fuzzy Model-Following
    Control of Robot Manipulators,” IEEE Trans. Fuzzy Syst. Vol.8, NO. 4,
    pp. 462-469, Aug. 2000.
    [35]K. Erbatur, and O. Kaynak,” Use of Adaptive Fuzzy Systems in Parameter
    Tuning of Sliding-Mode Controllers,” IEEE/ASME Trans. Mechatron., Vol.6,
    NO.4, pp. 474-482, Dec.2001.
    [36]L. K. Wong, F. H. F. Leung, and P. K .S. Tam, “A fuzzy sliding controller
    for nonlinear systems,” IEEE Trans. Indus. Electr. Vol. 48, NO. 1, pp. 32-
    37, Feb. 2001.
    [37]Y. Liu, A. W. Hoover, and I. D. Walker,” A Timing Model for Vision-Based
    Control of Industrial Robot Manipulators,” IEEE Trans. Robotics, Vol.20,
    NO.5, pp. 891-898, Oct. 2004.
    [38]V. P. Vega, S. Arimoto, Y.H. Liu, G. Hirzinger, and P. Akella, “ Dynamic
    Sliding PID Control for Tracking of Robot Manipulators: Theory and
    Experiments,” IEEE Trans. Robotics and Auto., Vol.19, NO.6, pp. 967-976,
    Dec. 2003.
    [39]J. J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, NJ,
    1991.
    [40]G. Tao, Adaptive Control Design and Analysis, John Wiley, NJ, 2003.
    [41]M. Zak, “Terminal attractors for addressable memory in neural networks,”
    Physics Letters A, Vol.133, NO.1,2, pp. 18-22, 1988.
    [42]M. Zak, “Terminal attractors in neural networks,” Neural Networks,
    Vol.2, pp. 259-274, 1989.
    [43]F.J. Chang, S. H. Twu, and S. Chang, “Adaptive chattering alleviation of
    variable structure systems control,” Proc, Inst. Elect. Eng. D, Vol.137,
    pp. 31-39, Jan. 1990.

    下載圖示 校內:2006-07-29公開
    校外:2006-07-29公開
    QR CODE