| 研究生: |
林裕翔 Lin, Yu-Hsiang |
|---|---|
| 論文名稱: |
具外部重整器之SOFC與汽渦輪機合併系統之可用能分析 Availability Analysis of Combined Gas Turbine and SOFC with External Reformer |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 固態氧化物燃料電池 、外部重整 、氣渦輪機 、可用能分析 |
| 外文關鍵詞: | SOFC, external reforming, gas turbine, availability analysis |
| 相關次數: | 點閱:96 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於支撐現代生活能源所需的石化能源逐漸耗盡,並且對環境造成如空氣污染以及溫室效應等衝擊。尋找替代性能源是刻不容緩的議題。固態氧化物燃料電池(Solid oxide fuel cell)工作溫度大約在攝氏八百度到一千度之間,比起其他燃料電池,有著高機械強度、寬廣的燃料選擇、以及可合併氣渦輪機提升效率等優點。
本文提出一個SOFC/GT複合系統,以甲烷為燃料,系統中包含一外部重整器,以及一後燃器。後燃器將殘餘的甲烷、氫氣、以及一氧化碳完全燃燒之後, 提供重整以及將空氣、燃料預熱所需的熱。我們以熱力學以及電化學反應建立系統之數學模型,計算系統運作下每一元件作功、所須熱量的情形、以及各元件的進出口狀況。藉由改變重整器之溫度與壓力,以及SOFC堆中之溫度、壓力、氫氣使用率等來分析系統表現的不同,以及系統各元件進出口狀態的改變。最後加入可用能之分析,釐清隨著參數的改變系統各元件可用能損失的情形。
Because the exhausting of petrolic energy which supporting modern life and using petrolic energy has done the environment great damages such as air pollutions and greenhouse effect, it is of great urgency to find an alternative energy solution. The solid oxide fuel cell (SOFC)has a working temperature about 800°C to 1000°C. Comparing to other types of fuel cells, SOFC does have many advantages like high mechanism strength, wide range of fuel selections, and the likelihood of combining a gas turbine to increase system efficiency.
In this lecture we suggest a SOFC/GT combine system, which uses methane as fuel and includes an external reformer and an afterburner. After the complete combustion of residues of methane, hydrogen, and carbon monoxide, the afterburner would provide the heat that needed by the reforming of the methane and the preheating of the fuel and the air. We use knowledge of thermodynamics and electric chemical processes to build a mathematical model of the system, and calculate the work done, the heat needed, and inlet/outlet states of each component when system is working. By changing reformer`s pressure and temperature and SOFC stack’s pressure, temperature, and utilization rate of hydrogen, we analyze the differences of system performances and all system components` inlet/outlet states. Finally we bring out availability analysis to clarify availability looses in all system components as changing system parameters.
[1] Cengel, Y. A. and Boles, M. A., Thermodynamics: An engineering Approach, 2nd Edition, Mc Graw-hill, New York, pp.763, 1994.
[2] Appleby, A. J. and Foulkes, F. R., Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989.
[3] Haynes, C., “Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines,” J. Power Sources, vol.92, pp.199-203, 2001.
[4] Lutz, A.E., Larson, R. S., and Keller, J. O., “Thermodynamic comparison of fuel cell to the Carnot cycle,” Int. J. Hydrogen energy, vol.27, pp.1103-1111, 2002.
[5] 李瑛, 王林山, 燃料電池, 冶金工業出版社, pp.6-7, 2000.
[6] Kordesch, K.,and Simader, G.,Fuel cell and their applications, Weinheim VCH,1995.
[7] Tsiakaras, P. and Demin, A., “Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol,” J. Power Source, vol.102, pp.210-217, 2001.
[8] Douvartzides, S. L., Coutelieris, F.A. and Tsiakaras, P.E., “On the systematic optimization of ethanol gas SOFC-based electricity generating systems in terms of energy and exergy,” J. Power Source, vol.114, pp.203-212, 2003.
[9] Aguiar, P., Chadwick, D., and Kershenbaum, L., “Modelling of an indirect internal reforming solid oxide fuel cell,” Chemical Engineering Science, vol.57, pp.1665-1677, 2002.
[10] Palsson , J., Selimovic, A., and Sjunnesson, L., “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation,“ J. Power Sources, vol.86, pp.442-448, 2000.
[11] Massardo, A.F., and Lubelli,F.,”Internal reforming solid oxide fuel cell-gas turbine combined cycles(IRSOFC-GT):part A-cell model and cycle thermodynamic analysis,” J.Engineering for Gas Turbines and Power, vol 122,pp27-35,2000.
[12] Haynes, C. and Wepfer, W.J.,”Enhancing fuel cell/gas turbine hybrid power system via reduced fuel utilization within Indirect inteenally reforming(IIR) fuel cell stacks,” Proc. ASME Advanced Energy Systems Division,Vol. 40,pp311-327,2000.
[13] Chan, S.H., Ho, H. K., and Tian, Y., “Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant,” J. Power Source, vol.109, pp.111-120, 2002.
[14] 陳君豪, “SOFC與小型汽渦輪機聯合系統之熱力學分析,” 成功大學機械工程研究所碩士論文,2003.
[15] Bedrings, K.W., Ertesvg, I.S, Byggstyl, S.and Magnussen, B.F., ”Exergy analysis of solid-oxide fuel-cell(SOFC) system,” Energy, vol.22,pp403-412, 1997.
[16] Chan, S.H., Low, C.F., and Ding, O.L.,”Energy and exergy analysis of solid-oxide fuel-cell power system,” J.
[17] Douvartzides, S., Coutrlieris, F., and Tsiakaras, P.,”Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane,” J.power source,vol.131,pp.224-230,2004.
[18] Hussain, M.H.,Dincer, I. And Li, X.,”Energy and exergy analysis of an integrated SOFC power system,” CSME Forum 2004, London.
[19] Moran, M.J.,and Shaprio, H.N., Fundamentals of engineering thermaodynamics,3rd edition,John Wiley &Sons, New York, 1995.
[20] Bessette, N.F., Borgium, B.P.,Schichl, H., and Schmidt, D.S. ”Siemens SOFC techonology on the way to economic competitiveness,” power journal-magazine of the Siemens power generation group, Siemens power generation group, 2001.
[21] Edward E. Anderson, Thermodynamics, PWS Publishing Company, Boston, p.678, 1994.
[22] Yunus A. C., and Michael A. B., Thermodynamics: An Engineering Approach, McGRAW-HILL, New York.
[23] Leo, J.M.J.B, and Michael, N.M., Fuel Cell System, Plenum publishing Corporation, New York, 1993.