簡易檢索 / 詳目顯示

研究生: 王永全
Wang, Yung-Chuan
論文名稱: 比較不同海拔玉山阿拉伯芥於熱逆境下之轉錄體
Comparative transcriptome analysis of Arabidopsis lyrata subsp.kamchatica from different altitude that differ in heat stress response
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 次世代定序T-DNA玉山阿拉伯芥阿拉伯芥
外文關鍵詞: NGS sequencing, T-DNA, Arabidopsis lyrata subsp. kamchatica, Arabidopsis thaliana
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於全球暖化的影響日益嚴重,逐年攀升的氣溫已經證實會對農作物的產量造成影響,而且高溫對動物所造成的熱壓力已造成美國家畜市場高達二十億美元的損失。高山因海拔高度差異而造成多樣的氣候環境,目前已有許多研究探討高山生物如何透過生理的調控來適應高山的氣候環境,但對於高山植物如何因應全球暖化,目前尚未有詳細的研究。本篇研究利用高溫模擬全球暖化並探討位於不同海拔之玉山阿拉伯芥及野生型(Col-0)之阿拉伯芥於熱逆境下所誘發之基因網路及途徑,並比較他們之間的異同。首先以38℃對Col-0阿拉伯芥及位於2000及3000公尺高之玉山阿拉伯芥進行3、5及7小時的熱逆境處理,發現熱逆境處理5小時之後,Col-0阿拉伯芥根尖細胞的死亡比例顯著較兩個不同海拔之玉山阿拉伯芥高,經過7小時的熱逆境處理後,3000公尺之玉山阿拉伯芥根尖細胞的死亡比例顯著較2000公尺高,由此可以發現三植株對於熱逆境有不同的耐受性。接著利用次世代定序技術分析三植株在熱逆境處理3小時後的轉錄體,發現乙烯生合成、鈣離子訊息傳遞及HSF之調控上Col-0阿拉伯芥與不同海拔之玉山阿拉伯芥之間有所差異,顯示Col-0阿拉伯芥及不同海拔之玉山阿拉伯芥在熱逆境下所誘發之基因網路及途徑有所不同。本研究亦分析兩個不同海拔之玉山阿拉伯芥在熱逆境下之轉錄體,發現一些功能尚未被明確探討卻可能參與熱逆境調控機制之轉錄因子及蛋白質激酶,進一步利用T-DNA突變植株驗證這些轉錄因子及蛋白質激酶確實參與植物因應熱逆境之調控機制中。
    綜合以上,本篇研究提供了高山植物因應全球暖化所誘發的分子機制,對於探究全球暖化下高山植物專屬之因應機制上是非常必要的。

    Because of the global average temperature has increasedin recent year, it has become an important issue in worldwide. In this study, I focus on the global warming giving an impact to alpine plants that grown in different altitudes which gives the environment diversity. The heat stress treatment of 38℃ in replacement of global warming were used to treat the Arabidopsis lyrata subsp.kamchaticafrom altitudes of 2000m and 3000m and Arabidopsisthaliana (Col-0). After treating heat stress with 38℃, Arabidopsis lyrata subsp.kamchaticafrom two altitudes and Arabidopsisthaliana (Col-0) showed different cell death ratio. NGS sequencing also showed variation in expression at transcriptome level,and found that differences of ethylene biosynthesis, calcium signaling pathway and the regulation of heat shock factor in the three plants, identifying different genes and pathway in response to heat stress. In this study also found that transcription factor and protein kinase genes that may participate in heat stress regulation in alpine plants that differ in two altitudes. Using the T-DNA mutant Arabidopsis thliana to confirm these transcription factor and protein kinase genes are participate in plant heat stress regulation. To sum up, this study presents high-alpine plants’ molecular mechanism in response to global warming. Such information is essential to identify specific genes and pathways involved in warmer climatic tolerance of high-alpine plants.

    目錄 摘要 I Extended abstract …………………………………………………………………......II 致謝 V 前言 1 一、 全球暖化 1 二、 全球暖化對高山植物的影響 2 三、 適應和馴化 2 四、 熱逆境對植物的影響 3 五、 HSF及HSP參與植物熱逆境下之調控機制 3 六、 植物熱逆境下鈣離子之訊息傳遞 4 七、 乙烯參與植物在熱逆境下之調控機制 4 八、 研究目的 5 材料與方法 6 一、 植物材料製備 6 (一) 玉山阿拉伯芥(Arabidopsis lyrata subsp. kamchatica)種子之採集 6 (二) 阿拉伯芥(Arabidopsis thaliana)之培養 6 (三) 玉山阿拉伯芥(Arabidopsis lyrata subsp. kamchatica)之培養 6 二、 熱逆境處理與細胞死亡測量 7 (一) 熱逆境處理與RNA萃取 7 (二) 阿拉伯芥細胞死亡測量 7 三、 基因表現量測定 8 (一) 反轉錄聚合酶連鎖反應(reverse transcription-PCR; RT-PCR) 8 (二) 即時聚合酶連鎖反應(Real time polymerase chain reation; Q-PCR) 9 四、 突變株之基因型鑑定 9 (一) T-DNA突變阿拉伯芥植株之DNA萃取 9 (二) T-DNA突變阿拉伯芥植株之基因型鑒定 10 結果 11 一、 分析阿拉伯芥與兩個不同海拔之玉山阿拉伯芥於熱逆境下因應策略之差異.....................................................................................................................11 (一) 阿拉伯芥與兩個不同海拔之玉山阿拉伯芥對熱逆境具有不同的耐受性..........................................................................................................................11 (二) 利用次世代定序分析阿拉伯芥與兩個不同海拔之玉山阿拉伯芥於熱逆境下之轉錄體......................................................................................................12 (三) 利用Mapman分析阿拉伯芥與玉山阿拉伯芥於熱逆境下之轉錄體差異.........................................................................................................................12 (四) 熱逆境下阿拉伯芥與玉山阿拉伯芥中乙烯生合成酵素之表現量不同..........................................................................................................................13 (五) 熱逆境下阿拉伯芥與玉山阿拉伯芥中調控鈣離子訊息傳遞相關基因之表現量不同..........................................................................................................13 (六) 於熱逆境下阿拉伯芥與玉山阿拉伯芥之HSF誘導量之差異 14 (七) 於控制組環境下阿拉伯芥與玉山阿拉伯芥之HSF表現量之差異 14 二、 尋找高山植物特有因應熱逆境之基因 15 (一) 熱逆境下玉山阿拉伯芥中誘導之上升量會隨著海拔升高而上升之轉錄因子基因..............................................................................................................15 (二) 熱逆境下玉山阿拉伯芥中受熱逆境誘導之上升量會隨著海拔升高而上升之蛋白質激酶基因..........................................................................................15 三、 分析可能為高山植物特有因應熱逆境之基因在馴化後玉山阿拉伯芥中之表現量變化 16 (一) 熱逆境下馴化後之玉山阿拉伯芥HSF基因之表現量變化 16 (二) 熱逆境下馴化後之玉山阿拉伯芥轉錄因子基因之表現量變化 16 (三) 熱逆境下馴化後之玉山阿拉伯芥蛋白質激酶基因之表現量變化 17 四、 利用T-DNA突變阿拉伯芥植株驗證是否參與植物之抗熱逆境機制.........................................................................................................................17 (一) 觀測T-DNA突變阿拉伯芥植株與野生型阿拉伯芥植株之生長情形..........................................................................................................................17 (二) 觀測短時間熱逆境處理後T-DNA突變阿拉伯芥根部細胞之死亡情形……………………………………………………………………………………………………………………18 (三) 觀測較長時間熱逆境處理後T-DNA突變阿拉伯芥之生長情形 18 討論 19 一、 熱逆境對阿拉伯芥及兩個不同海拔之玉山阿拉伯芥之影響 19 二、 熱逆境下阿拉伯芥及玉山阿拉伯芥乙烯生合成機制之差異 20 三、 熱逆境下阿拉伯芥及玉山阿拉伯芥鈣離子訊息傳遞路徑之差異 21 四、 熱逆境下阿拉伯芥及兩個不同海拔之玉山阿拉伯芥HSF調控機制之差異………………………………………………………………………………..21 五、 熱逆境下阿拉伯芥及兩個不同海拔之玉山阿拉伯芥分子機制之差 異..........................................................................................................................22 六、 利用馴化後之玉山阿拉伯芥證實因不同生長環境所產生之適應及馴化作用對熱逆應反應機制之響..............................................................................23 七、 利用T-DNA突變植株證實所發現之轉錄因子及蛋白質激酶確實參與熱逆境之調控機制..................................................................................................24 八、 結論 24 參考文獻 25 圖目錄 圖一、阿拉伯芥、2000公尺及3000公尺之玉山阿拉伯芥於熱逆境處理後根部細胞死亡比例......…………......…………......…………......…………......………………..32 圖二、以文氏圖表示阿拉伯芥、2000公尺及3000公尺之玉山阿拉伯芥於熱逆境處理下調控上升之轉錄產物異同......…………......…………......…………..................33 圖三、以Bin MapMan Wilcoxon Rank Sum Test 軟體分析阿拉伯芥及玉山阿拉伯芥於熱逆境處理下調控上升之轉錄產物差異......…………......…………......………..34 圖四、以次世代定序與即時聚合酶連鎖反應分析阿拉伯芥及玉山阿拉伯芥於熱逆境處理下乙烯生合成基因表現量差異......…………......…………......………………..35 圖五、以次世代定序與即時聚合酶連鎖反應分析阿拉伯芥及玉山阿拉伯芥於熱逆境處理下乙烯生合成基因表現量差異......…………......…………......………………..36 圖六、以即時聚合酶連鎖反應分析阿拉伯芥、2000公尺及3000公尺之玉山阿拉伯芥於熱逆境處理下受誘導上升之HSF表現量及未受熱逆境影響下HSF之表現量......…………......…………......…………......…………......……………………..37 圖七、整合阿拉伯芥及兩個不同海拔之玉山阿拉伯芥因應熱逆境機制之差異39 圖八、以次世代定序與即時聚合酶連鎖反應分析熱逆境下受誘導之表現量會隨著海拔升高而增加之轉錄因子及蛋白質激酶基因在阿拉伯芥、2000公尺及3000公尺之玉山阿拉伯芥中之表現量........…………......…………......…………............................41 圖九、以次世代定序與即時聚合酶連鎖反應分析熱逆境下受誘導之表現量會隨著海拔升高而增加之轉錄因子及蛋白質激酶基因在2000公尺、3000公尺及馴化後之玉山阿拉伯芥中之表現量......…………......…………......…………......…………………43 圖十、觀察T-DNA突變阿拉伯芥植株之生長情形......…………......…………..45 圖十一、測定T-DNA突變阿拉伯芥植株熱逆境下之根尖細胞死亡比例..........46 圖十二、觀測T-DNA突變阿拉伯芥植株於熱逆境處理後之白化葉片數量…..47 圖十三、觀測EGTA及Ca2+影響紫花苜蓿於熱逆境下之細胞死亡比例……...53 圖十四、以q-PCR測定T-DNA突變株於熱逆境下之基因表現……………….54 圖十五、觀察T-DNA突變植株於一小時熱逆境處理後之ROS累積情形……55 表目錄 表一、阿拉伯芥與玉山阿拉伯芥採樣地區之一月與七月均溫......………….....31 附件一、進行Q-PCR之引子序列......…………......…………......………….......48 附件二、本研究所用到之T-DNA突變植株及用鑑定其基因型之引子序列….50 附件三、次世代定序結果中被針測之HSF受熱誘導之表現量…………….….50 附件四、本實驗中所研究之基因次世代定序受熱誘導上升之表現量…………51

    1. Ahammed, G.J., Li, X., Zhou, J., Zhou, Y.-H. and Yu, J.-Q. Role of Hormones in Plant Adaptation to Heat Stress. In Plant Hormones under Challenging Environmental Factors (Ahammed, J.G. and Yu, J.-Q. eds). Dordrecht: Springer Netherlands, pp. 1-21 (2016)
    2. Ainsworth, E.A., Rogers, A. and Leakey, A.D.B. Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147, 13-19 (2008)
    3. Barah, P., Jayavelu, N.D., Mundy, J. and Bones, A.M. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress. Frontiers in Plant Science, 4 (2013)
    4. Coles, S.L. and Brown, B.E. Coral bleaching — capacity for acclimatization and adaptation. In Advances in Marine Biology: Academic Press, pp. 183-223 (2003)
    5. Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnbock, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., Psomas, A., Schmatz, D.R., Silc, U., Vittoz, P. and Hulber, K. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Clim. Change, 2, 619-622 (2012)
    6. GATES, R.D. and EDMUNDS, P.J. The Physiological mechanisms of acclimatization in tropical reef corals. American Zoologist, 39, 30-43 (1999)
    7. Gehan, M.A., Park, S., Gilmour, S.J., An, C., Lee, C.-M. and Thomashow, M.F. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. The Plant Journal, 84, 682-693 (2015)

    8. Gill, S.S. and Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930 (2010)
    9. Golemiec, E., Tokarz, K., Wielanek, M. and Niewiadomska, E. A dissection of the effects of ethylene, H2O2 and high irradiance on antioxidants and several genes associated with stress and senescence in tobacco leaves. Journal of Plant Physiology, 171, 269-275 (2014)
    10. GUILIONI, L., WERY, J. and TARDIEU, F. Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Annals of Botany, 80, 159-168 (1997)
    11. Higashi, Y., Ohama, N., Ishikawa, T., Katori, T., Shimura, A., Kusakabe, K., Yamaguchi-Shinozaki, K., Ishida, J., Tanaka, M., Seki, M., Shinozaki, K., Sakata, Y., Hayashi, T. and Taji, T. HsfA1d, a protein identified via FOX hunting using yhellungiella salsuginea cDNAs improves heat tolerance by regulating heat-stress-responsive gene expression. Molecular Plant, 6, 411-422 (2013)
    12. Ikeda, M., Mitsuda, N. and Ohme-Takagi, M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology, 157, 1243-1254 (2011)
    13. Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E. and Scharf, K.-D. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10, 310-316 (2007)
    14. Lang, T., Sun, H., Li, N., Lu, Y., Shen, Z., Jing, X., Xiang, M., Shen, X. and Chen, S. Multiple signaling networks of extracellular ATP, hydrogen peroxide, calcium, and nitric oxide in the mediation of root ion fluxes in secretor and non-secretor mangroves under salt stress. Aquatic Botany, 119, 33-43 (2014)
    15. Larkindale, J. and Knight, M.R. Protection against heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiology, 128, 682-695 (2002)
    16. Lashof, D.A. and Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529-531 (1990)
    17. Lasky, J.R., Des Marais, D.L., McKay, J.K., Richards, J.H., Juenger, T.E. and Keitt, T.H. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Molecular Ecology, 21, 5512-5529 (2012)
    18. Liu, H.-C., Liao, H.-T. and Charng, Y.-Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment, 34, 738-751 (2011)
    19. Müller, M. and Munné-Bosch, S. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiology, 169, 32-41 (2015)
    20. Memmott, J., Craze, P.G., Waser, N.M. and Price, M.V. Global warming and the disruption of plant–pollinator interactions. Ecology Letters, 10, 710-717 (2007)
    21. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490-498 (2004)
    22. Morgan, P.W. and Drew, M.C. Ethylene and plant responses to stress. Physiologia Plantarum, 100, 620-630 (1997)
    23. Nishizawa-Yokoi, A., Nosaka, R., Hayashi, H., Tainaka, H., Maruta, T., Tamoi, M., Ikeda, M., Ohme-Takagi, M., Yoshimura, K., Yabuta, Y. and Shigeoka, S. HsfA1d and HsfA1e Involved in the Transcriptional Regulation of HsfA2 Function as Key Regulators for the Hsf Signaling Network in Response to Environmental Stress. Plant and Cell Physiology, 52, 933-945 (2011)

    24. Nishizawa-Yokoi, A., Yoshida, E., Yabuta, Y. and Shigeoka, S. Analysis of the Regulation of Target Genes by an Arabidopsis Heat Shock Transcription Factor, HsfA2. Bioscience, Biotechnology, and Biochemistry, 73, 890-895 (2009)
    25. Nogués-Bravo, D., Araújo, M.B., Errea, M.P. and Martínez-Rica, J.P. Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17, 420-428 (2007)
    26. Qu, A.-L., Ding, Y.-F., Jiang, Q. and Zhu, C. Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432, 203-207 (2013)
    27. Röth, S., Paul, P. and Fragkostefanakis, S. Plant Heat Stress Response and Thermotolerance. In Genetic Manipulation in Plants for Mitigation of Climate Change (Jaiwal, K.P., Singh, P.R. and Dhankher, P.O. eds). New Delhi: Springer India, pp. 15-41 (2015)
    28. Sato, H., Mizoi, J., Tanaka, H., Maruyama, K., Qin, F., Osakabe, Y., Morimoto, K., Ohori, T., Kusakabe, K., Nagata, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. Arabidopsis DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. The Plant Cell, 26, 4954-4973 (2014)
    29. Schaller, G.E. Ethylene and the regulation of plant development. BMC Biology, 10, 1-3 (2012)
    30. Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E. and Von Koskull-Döring, P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal, 53, 264-274 (2008)

    31. SØRensen, J.G., Norry, F.M., Scannapieco, A.C. and Loeschcke, V. Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18, 829-837 (2005)
    32. Suzuki, N., Koussevitzky, S., Mittler, R.O.N. and Miller, G.A.D. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35, 259-270 (2012)
    33. Prosser L, ed. Introduction: definition of comparative physiology. Theory of adaptation. In: Environmental and Metabolic Animal Physiology, p. 588. Wiley-Liss, New York (1990)
    34. Van Zanten, M., Bours, R., Pons, T.L. and Proveniers, M.C.G. Plant acclimation and adaptation to warm environments. In Temperature and Plant Development: John Wiley & Sons, Inc, pp. 49-78 (2014)
    35. Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199-223 (2007)
    36. Wheeler, T. and von Braun, J. Climate Change Impacts on Global Food Security. Science, 341, 508-513 (2013)
    37. Xu, L., Lin, Z., Tao, Q., Liang, M., Zhao, G., Yin, X. and Fu, R. Multiple NUCLEAR FACTOR Y Transcription Factors Respond to Abiotic Stress in Brassica napus L.PLoS ONE, 9, e111354 (2014)
    38. Yang, T., Chaudhuri, S., Yang, L., Chen, Y. and Poovaiah, B.W. Calcium/Calmodulin Up-regulates a Cytoplasmic Receptor-like Kinase in Plants. Journal of Biological Chemistry, 279, 42552-42559 (2004)
    39. Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J.-M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schöffl, F., Shinozaki, K. and Yamaguchi-Shinozaki, K. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 286, 321-332 (2011)
    40. Zhang, N., Vierling, E. and Tonsor, S. Adaptive divergence in transcriptome response to heat and acclimation in Arabidopsis thaliana plants from contrasting climates. bioRxiv (2016)

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE