簡易檢索 / 詳目顯示

研究生: 黃黎明
Huang, Li-Ming
論文名稱: 聚(2,5-二甲氧苯胺)之電致變色及電性研究
Electrochromic and Electronic Properties of Poly(2,5-dimethoxyaniline)
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 152
中文關鍵詞: 聚(2, 5-二甲氧苯胺)蕭基二極體電致變色元件
外文關鍵詞: Poly(2, 5-dimethoxyaniline), Electrochromic device, Schottky diodes
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研究聚苯胺衍生物,聚(2,5-二甲氧苯胺)(PDMA)的電化學特性、電致變色性質以及與金屬接面的電子特性的研究。論文分作兩部分來探討,首先將針對聚(2,5-二甲氧苯胺)的電化學性質及電致變色性質進行研究探討,進而利用聚(2,5-二甲氧苯胺)以及三氧化鎢當作互補電極,聚氧化乙烯(PEO)摻雜LiClO4為高分子電解質,以製作成電致變色元件,並探討元件特性。第二部分則是針對聚(2,5-二甲氧苯胺與低功函數的鋁金屬進行接面接觸,探討其電子特性。
    (1)聚(2,5-二甲氧苯胺)之電致變色行為
      聚(2,5-二甲氧苯胺)的電化學合成是0.5 M硫酸水溶液中,利用循環伏安法在於0.0 V ~ 0.8 V的電位區間,掃瞄速率為50 mV/s的條件下聚合而成。循環伏安掃瞄的結果顯示,聚(2,5-二甲氧苯胺)由於具有兩個推電子的甲氧基,使得emeraldine氧化至pernigraniline的電位下降。紫外光/可見光光譜顯示,PDMA具有三個吸收波峰,分別出現於λmax = 375 nm (I), 460 nm (II)以及770 nm (III)。即時光譜電化學研究顯示,此三波峰的吸收度隨電位改變會有遲滯現象發生。電致變色動力學的探討是利用回歸方程式,分別求得變色動力學相關係數,配合微分循環伏安吸收圖譜(DCVA)分析,證實聚(2,5-二甲氧苯胺)於電位0.0 V時還原並不完全,仍有殘留的吸收度存在。聚(2,5-二甲氧苯胺)由於甲氧基取代,使得高分子結構產生改變,使得應答時間(9秒)比聚苯胺(22秒)還快,因此決定應答時間的快慢及氧化程度。
      聚(2,5-二甲氧苯胺)與三氧化鎢及高分子電解質(PEO)進行電致變色元件製作及特性探討,聚(2,5-二甲氧苯胺)與三氧化鎢單一電極的庫侖效率接近100 %。電致變色元件的電位操作範圍為-1.50 V至1.50 V,顏色變化為微黃色(-1.50 V)及墨綠色(+1.50 V),庫侖效率為92 %,褪色的應答時間比著色快,穩定性測試則是極化元件之後,記錄開環電路的光譜吸收度變化,元件的著色穩定性比褪色佳。
    (2) 聚(2,5-二甲氧苯胺)二極體之蕭基行為
      聚(2,5-二甲氧苯胺)二極體蕭基行為的研究分為兩部分。第一部針對聚(2,5-二甲氧苯胺)結構的差異,對於高分子的特性以及製作成蕭基二極體的電子特性影響進行探討。此部分的研究是利用聚(2,5-二甲氧苯胺)(PDMA)及聚甲氧苯胺(POMA)與鋁箔進行接面接觸以製作蕭基二極體。電流-電位特性結果顯示,由於結構的差異,使得接面參數,如起使電位、勢壘高度及飽和電流有所差異。循環伏安及紫外光/可見光譜證實甲氧基的數目會影響到元件的電子特性。
      第二部分的研究是針對摻雜硫酸與甲基磺酸的不同,探討對於製作成蕭基二極體特性的影響。蕭基二極體的製作是利用聚(2,5-二甲氧苯胺)與聚氧化乙烯(PEO)進行摻合以製備高分子複合膜,並利用旋轉塗佈的方法成膜於ITO玻璃上,再與鋁箔進行接面接觸,製作出ITO/PEO-PDMA (SA or MSA)/Al之蕭基二極體。電流-電位特性及交流組抗來分析高分子複合膜與鋁金屬的接面電性性質,結果顯示,高分子複合膜由於摻雜酸的不同,使得電子狀態、表面結構以及電荷傳輸機制的改變,以致於元件接面參數,如勢壘高度、起使電位、Richardson常數及ideality factor有所差異。綜合電流-電位特性分析與交流組抗分析的結果顯示,摻雜甲基磺酸的元件會有較厚的耗盡層厚度,以致於擁有較大的勢壘高度。

      The main objective of the present investigation is to study the electrochemical, electrochromic and junction properties of poly(2,5-dimethoxyaniline) (PDMA). The results and discussion of these studies are presented in two parts.
      In the first part, the evaluation of electrochemical and electrochromic properties of PDMA are described. Using PDMA as an electrochromic material, the possibility of an electrochromic device was tested by the assembling of PDMA and WO3 as chromic materials and PEO-LiClO4 as electrolyte.
      In the second part, the junction properties of PDMA coupled with a low work function metal, (Al) were evaluated.
    (1) Electrochromic properties of PDMA
      Initially, PDMA was prepared as a film by electrochemical deposition. The electrochemical, optical and spectroelectrochemcial properties of PDMA were determined. Electrochemical polymerization of (2, 5-dimethoxyaniline) was performed in 0.5 M H2SO4 aqueous solution using cyclic voltammetry at a scan rate of 50 mV/s. The results from cyclic voltammetry revealed that PDMA could be easily transformed from emeraldine to pernigraniline state due to the presence of two electron donating groups, -OCH3.
      UV-Visible spectrum of PDMA showed three optical transitions at λmax = 375 (I), 460 (II) and 770 nm (III). Spectroelectrochemical studied on PDMA informed the hysteresis in absorbance-potential forλmax = 375 (I), 460 (II) and 770 nm. The derivative cyclicvoltabstogram (DCVA) deduced from spectrvoltammetry reveals the presence of residual absorbance at E =0.0 V. A linear correlation was deduced between half intensity of absorbance (EA1/2) at the selected wavelength and scan rate. Response time (9 sec) was found to be smaller for PDMA than PANI (22 sec) due to the presence of the two electron donating groups. Rate of coloration was found to be influenced by the extent of oxidation to its maximum state. The conformational variations due to the presence of bulkey methoxy groups present in PDMA determine the response time and extend of oxidation.
      For fabricating the electrochromic device PDMA was deposited as on indium tin oxide (ITO) coated glass and used as an electrode. Film of tungsten oxide (WO3) on ITO glass was used as the other electrode with LiClO4 doped gelled polyethylene oxide (PEO) as polymer electrolyte. An electrochromic device with the following configuration was assembled: ITO/PDMA∥LiClO4-PC-PEO∥WO3/ITO. The coulombic efficiency (CE) of the ITO/PDMA and ITO/WO3 electrodes was close to 100 %. A visible contrast in color upon switching the potential from -1.50 to +1.50 V was notice for the device. The device was pale yellow at -1.50 V and dark green at +1.50 V. The CE of the device was 92 %. The device gets bleached at a faster rate than the coloring. Polarizing the device and recording the UV-Visible spectrum in the open circuit conditions established the stability of the device. Coloring state seems to be more stable than bleaching state.
    (2) Schottky behavior of PDMA-based diodes
      Using methoxy substituted polyaniline as a junction material, the structural influence on the electronic properties of the Schottky barrier diode based on methoxy substituted Polyaniline/aluminum was evaluated. PDMA and poly(o-methoxyaniline)(POMA) were used for fabricating Schottky diode devices with sandwich structure denoted as Al/PDMA/ITO and Al/POMA/ITO. The devices exhibit rectifying behavior with differences in performance parameters like turn on voltage of the device, barrier height and saturation current. Cyclic voltammetry and UV-Visible spectroscopy of PDMA and POMA films were used to obtain electrochemical and optical properties of the polymers and discussed in support of the observed differences in the electronic properties of the devices fabricated with PDMA/POMA.
      Also, the differences of two dopants, sulphate anion (SA) and methane sulfonate anion (MSA), on the electronic properties of the device were studied. The schottky barrier diode devices were fabricated in a sandwich configuration as ITO/PDMA(SA)-PEO/Al and ITO/POMA(MSA)-PEO/Al by using a composite film (PDMA-PEO) as a junction material. The electronic properties of the Al/PEO-PDMA (doped with SA and MSA) junctions were evaluated by current-voltage characteristics and impedance spectroscopy measurement. The electronic parameters of these junctions were analyzed and compared in the light of the differences in the electronic state, morphology and transport of carriers. Doping with different dopants lead to the differences in junction parameters, such as barrier height, turn on voltage, Richardson constant and ideality factor. The combined analyses of current-voltage characteristics and impedance measurements reveal that PDMA doped with MSA increases the thickness of depletion layer as well as a large barrier height.

    目錄 誌謝…………………………………………………………………….. i 中文摘要……………………………………………………….ii 英文摘要………………………………………………………iv 目 錄………………………………………………………….vii 圖目錄……………………………………………………xi 表目錄………………………………………………………xvi 符號…………………………………………………………xvii 第一章、緒論…………………………………………………...1 1-1 導電性高分子…………………………………………………….1 1-1-1 導電性高分子之發展……………………………………….2 1-1-2 導電性高分子之分類……………………………………….3 1-1-3 導電機制…………………………………………………….4 1-1-4 加工性……………………………………………………….6 1-1-5 導電性高分子之合成方法………………………………….7 1-1-5-1 化學聚合…….…………………………………………7 1-1-5-2 電化學聚合…………………………………………….8 1-1-6 導電性高分子之應用……………………………...………10 1-1-6-1 有機發光二極體……………………………….………11 1-1-6-2 電化學發光元件…………………………………….…13 1-1-6-3 超高電容器……………………………………….……15 1-1-6-4 生化感測器………………………………………….…16 1-1-6-5 電致變色元件……………………………………….…18 1-1-6-6 蕭基二極體……………………………………………22 1-1-6-7 有機電晶體……………………………………………24 1-2 聚苯胺衍生物與其共聚合物………………………………...…26 1-2-1 環取代苯胺衍生物……….………………………………26 1-2-2 N取代聚苯胺衍生物……………………………….……27 1-2-3 磺酸化聚苯胺………………………………………….…28 1-3 導電性高分子之電致變色行為……………………...…………29 1-3-1 電致變色原理………………………………………….…29 1-3-2 導電性高分子應用於電致變色元件之優點…………….30 1-3-3 電致變色元件之製作…………………………………….33 1-4 金屬-半導體接觸………………………………………………34 1-4-1 蕭基勢壘(Schottky barrier)…………...……………………34 1-4-2 蕭基勢壘的電壓電流特性………………………………....35 1-5 研究動機……………………………………………...…………37 第二章、聚(2,5-二甲氧苯胺)之電致變色行為………………54 2-1 前言……………………………………………………………...54 2-2 實驗部分……………………………………………………...…55 2-2-1 藥品與裝置.........................................................................55 2-2-2 (2,5-二甲氧苯胺)之電化學聚合…………….……………55 2-2-3 聚(2,5-二甲氧苯胺)之光譜電化學………………………56 2-3 結果討論……………………………………………………...…56 2-3-1聚(2,5-二甲氧苯胺)之氧化還原特性.................................56 2-3-2聚(2,5-二甲氧苯胺)之光譜電化學…………………….…58 2-3-3聚(2,5-二甲氧苯胺)之電致變色動力學探討…………….59 2-3-4聚(2,5-二甲氧苯胺)之電致變色特性…………………….61 2-4 結論…………………………………………………………...…62 第三章、聚(2,5-二甲氧苯胺)之電致變色元件製作及特性探討………………………………………………......74 3-1 前言……………………………………………………………...74 3-2 實驗部分………………………………………………………...76 3-2-1 聚(2,5-二甲氧苯胺)之合成……………………………….76 3-2-2 三氧化鎢(WO3)薄膜之製備………………...………….…76 3-2-3 電致變色元件之製作……………………………….….…76 3-2-4 氧化、還原特性……………………………………..….....77 3-2-5 電致變色特性……………………………….…………….77 3-3 結果討論………………………………………………………...78 3-3-1 單一電極之循環伏安特性…………….…………….……78 3-3-2 單一電極之光譜電化學…………………………………..79 3-3-3 電致變色元件之電致變色特性…………………………..80 3-4 結論……………………………………………………………...82 第四章、聚苯胺衍生物結構之變異於蕭基二極體製作及特性影響之探討……………………………………...…93 4-1 前言……………………………………………………………...93 4-2 實驗部分………………………………………………………...93 4-2-1 藥品與裝置………………………………………………95 4-2-2 DMA及OMA之電化學聚合及電化學物性分析……….95 4-2-3 紫外光/可見光光譜………………………………………95 4-2-4 蕭基二極體之製作及I-V特性量測……………………...96 4-3 結果討論…………………………………………………...……96 4-3-1 電流(I)-電位(V)特性…………………………………..…96 4-3-2 PDMA及POMA之電化學行為……………….………….99 4-3-3 PDMA與POMA之紫外光/可見光光譜………………100 4-4 結論………………………………………………………….…102 第五章、聚(2,5-二甲氧苯胺)-聚氧化乙烯複合膜鋁金屬接面蕭基二極體之電性探討………………………..110 5-1 前言………………………………………………………...….110 5-2 實驗部分……………………………………………………….112 5-2-1 藥品與裝置………………………………………………112 5-2-2 化學聚合…………………………………………………112 5-2-3 聚摻合物之製備…………………………………………113 5-2-4 紫外光/可見光光譜……………………………………..113 5-2-5 蕭基二極體之製作……………………………………....113 5-2-6 電流(I)-電位(V)及交流阻抗分析……………………….113 5-3 結果討論……………………………………………………….114 5-3-1 電流(I)-電位(V)分析…………………………………….114 5-3-2 交流阻抗頻譜分析………………………………………119 5-4 結論…………………………………………………………….120 第六章、總結與展望…………………………………...……129 參考文獻…………………………………………………….132 著作………………………………………………………….149 期刊論文…………………………………….………………….149 研討會論文……………………………………………………..150 自述…………………………………………………………152 圖目錄 Fig. 1-1. Conductivities of main conducting polymers compared with other classical conductors, semiconductors, and insulators. The arrows indicate the ranges of conductivity from the dedoped state (lower value) to the doped state (upper value)………………………………………………………………..39 Fig. 1-2. Classification of conducing polymer according to the polymer chain composition………………………………………………………………..40 Fig. 1-3. Molecular structures of a few conjugated polymers………………………..41 Fig. 1-4. Electrochemical cell used for spectroelectrochemistry. An optically transparent electrode as ITO is shown inside the cuvette………………..42 Fig. 1-5. Schematic picture of a single layer polymer light emitting diode. Injection under bias (V) of electrons (e-) and holes (h+) is illustrated in the panel to the right. The Fermi levels of the metal cathode and ITO anode are depicted, as are the conduction and valence bands of the polymer. The electron and hole polarons migrate through the film due to the electric field. If electron and hole polarons meet, recombination can occur producing photons (hv)………………………………………………………………………...42 Fig. 1-6. The structure of PEDOT/PTOPT(PMMA)flexible polymer light emitting diodes (FPLED)…………………………………………………….…..43 Fig. 1-7 (a) Typical current-light-voltage characteristics of an ITO/PPV + PEO(Li)/Al cell. The voltage scans from 0 to 4 V and from 0 to -4 V, respectively. (b) Electroluminescent and photoluminescent spectra of a thin layer of a blend of PPV and PEO with LiCF3SO3 in the ratio of 1:1: 0.18. The electroluminescent spectra were generated by incorporation of the layer in an ITO/PPV + PEO/Al LEC structure……………………………….....43 Fig. 1-8. Schematic diagram of the electrochemical processes in a solid-state light-emitting electrochemical cell comprising oxidized molecules (large open circles), reduced molecules (large close circles), anions (circled minus), holes (small open circles), electrons (small closed circles) and photons (stars)………………………………………………………..….44 Fig. 1-9. Pathway suggested for electron transfer in conducting polymer based biosensors………………………………………………………………..44 Fig. 1-10. Principle for four different applications of electrochromic devices. Arrows indicate incoming and outgoing electromagnetic radiations; the thickness of the arrow signifies radiation intensity…………………………………45 Fig. 1-11. Gentex windows being tested in Florida. A man is visible beneath the nearest……………………………………………………………………45 Fig. 1-12. Close-up of Gentenx windows: (a) switch on; (b) switch off…………….46 Fig. 1-13. Gentex windows (1 × 2 m2) (a) cleared and (b) darkned………………..46 Fig. 1-14. Available Gentex windows, in off (a) and on (b) states…………………...46 Fig. 1-15. Pixel array showing no cross-talk between closed pixel elements, with solution phase electrochromes[94]…………………………………..…...47 Fig. 1-16. Components of seven segments display…………………………………..47 Fig. 1-17. Prussian blue seven segment display………………………………...……48 Fig. 1-18. Schematic view of the FET made with an α-sexithiophene single crystal on a poly(methyl methacrylate) insulating layer [120]……………………...48 Fig. 1-19. Schematic band picture of doping induced states and the optical transition due to these. When undoped (a) the polymer is characterized by a bandgap transition; (b) after doping there are two new bipolaron states induced, which leads to new optical transitions in addition to the bandgap transition (which is shifted to higher energies)……………………………………..49 Fig. 1-20. Photograph of variable bandgap EDT-based copolymers, demonstrating the range of accessible colors [188]………………………………………….49 Fig1-21. PEDOT-F switching experiments recorded at λmax showing a switching time of ~1.2 s and ΔT = 66 % [189]……………………………………50 Fig. 1-22. The hinded silicon “flap” coated with PPY, constructed on a silicon chip. The hinge is a gold/PPY bilayer, operated by redox reaction of PPY, which has different molar volumes in the two redox states, hence effecting operating and closing of the hinge [190]. (a) Schematic of the fabrication, (b) operating principle, and (c) snapshote taken during operating……….50 Fig. 1-23. Basic design of an electrochromic device, indicating transport of positive ions under the action of an electric field…………………………………51 Fig. 1-24. A Schottky barrier formed by contacting (a) n-type semiconductor with a metal having high work function and (b) p-type semiconductor with a metal having low work function [209]…………………………………...51 Fig. 2-1. Cyclic voltammogram of PDMA-modified Pt electrode in 0.5 M H2SO4. Film deposition: [DMA] = 10 mM, No of cycles = 50, potential range = 0.0 V to 1.0 V and scan rate = 50 mV/s…………………………………...…..64 Fig. 2-2. (a) UV-Vis spectra of a PDMA-coated ITO electrode obtained at different electrode potentials ranging from EAg/AgCl = 0.0 to + 0.4 V at every 0.05 V. (b) Absorbance vs. potential plot for three selected wavelengths derived from spectra displayed above…………………………..…………………65 Fig. 2-3. Cyclic spectrovoltammograms of a PDMA-coated electrode obtained at λ = 365 nm with scan rate = (a) 1mV/s, (b) 5 mV/s, (c) 10 mV/s…………….66 Fig. 2-4. Cyclic spectrovoltammograms of a PDMA-coated electrode obtained at λ = 460 nm with scan rate = (a) 1mV/s, (b) 5 mV/s, (c) 10 mV/s…………….67 Fig. 2-5 Cyclic spectrovoltammograms of a PDMA-coated electrode obtained at λ = 770 nm with scan rate = (a) 1mV/s, (b) 5 mV/s, (c) 10 mV/s………………68 Fig. 2-6. The derivative cyclic voltabsorptogram (dA/dt) for PDMA coated ITO electrode at λ = 375 nm……………………………………………………..69 Fig. 2-7. Absorbance – time (a), current – time (b) and potential – time profiles of PDMA recorded during double step spectrochronoamperometry…...……70 Fig. 3-1. Schematic diagram of ITO/PDMA∥PEO-PC-LiClO4∥WO3/ITO device.........................................................................................................84 Fig. 3-2. Cyclic voltammetry (v = 20 mV/s) of: (a) ITO/PDMA and (b) ITO/WO3 electrodes…………………………………………………………………85 Fig. 3-3. The transmittance spectra at the oxidized (+ 0.5 V) and reduced state (- 0.5 V) for (a) ITO/PDMA and (b) ITO/WO3 electrode…………………….…….86 Fig. 3-4. Cyclic voltammetry of the device for 50th cycles. Potential range = -1.5 V to 1.5 V and v = 20 mV/s…………………………………………….……..…87 Fig. 3-5. Photos showing the extreme durability of the device. The device is biased with ± 1.5 V for electrochromic switching. The device is pale yellow at -1.5 V (a) and green at + 1.5 V (b)……………………………………...…88 Fig. 3-6. Transmittance spectra of the device ITO/PDMA//LiClO4-PC-PEO (400,000)//WO3/ITO during the voltammetric scan (-1.5 V and + 1.5 V)………………………………………………………………………...89 Fig. 3-7. Potential – time (a), current – time (b) and Transmittance – time profiles of the device recorded during double step spectrochronoamperometry…….90 Fig. 3-8. Variation of transmittance with time under open circuit conditions at the bleached form of the device…………………………………...91 Fig. 3-9. Variation of transmittance with time under open circuit conditions at the colored form of the device……………………………………………….92 Fig. 4-1. Schematic diagram of ITO/PDMA/Al and ITO/POMA/Al Schottky diodes…………………………………………………………….……..103 Fig. 4-2. Current-voltage characteristics of (a) ITO/PDMA/Pt, (b) ITO/POMA/Pt (C) ITO/PDMA/Al and (D) ITO/POMA/Al devices……………...………..104 Fig. 4-3. Cyclicvoltammogram of PDMA and POMA …………………………….105 Fig. 4-4. Charge associated for polymer deposition as a function of number of cycles for (◆) PDMA and (●) POMA…………………………………………..106 Fig. 4-5. UV-Visible spectrum of PDMA and POMA……………………………...107 Fig. 4-6. Plot of (α hν)2 vs. hν for (a)PDMA and (b)POMA…………………..……108 Fig. 5-1. Experimental setup for chemical polymerization of 2,5-dimethoxyaniline (DMA)………………………………………………………………....121 Fig. 5-2. Current-voltage characteristics of (a) ITO/PDMA (doped with SA)/Al and (b) ITO/PDMA (doped with MSA)/Al devices……………………….....122 Fig. 5-3. UV-Vis spectrum of (a) PDMA (doped with SA)-PEO and (b) PDMA (doped with MSA)-PEO blend……………………………………….....123 Fig. 5-4. Temperature dependence of I-V characteristics of the devices: (a) ITO/PEO-PDMA (SA)/Al and (b) ITO/PEO-PDMA (MSA)/Al. (◆):25 ℃, (▲) 30 ℃, (●) 40 ℃, (■) 50 ℃ and (+) 60 ℃………….…………..124 Fig. 5-5. Plot of ln(I0/T2) vs. 1/T for devices (a) ITO/PEO-PDMA (SA)/Al and (b) ITO/PEO-PDMA (MSA)/Al……………………………………………..125 Fig. 5-6. Effect of scan rate on peak current. (a) PDMA-PEO doped with SA and (b) PDMA-PEO doped with MSA. The CVs of composite film. Peak I correspond to polaron formation and peak II correspond to bipolar formation………………………………………………………………....126 Fig. 5-7. Nyquist plot at different bias voltages: (a) ITO/PEO-PDMA (SA)/Al and (b) ITO/PEO-PDMA (MSA)/Al. The corresponding equivalent circuit diagrams are shown in (c)………………………..………………………127 表目錄 Table 1-1 Two main groups of the applications for conducting polymers……….…..52 Table 1-2. Electroluminescent materials for various colors………………………….52 Table 1-3 Electrochromic parameters for poly(hetercyclic) polymers…………….....53 Table 1-4 Comparative features of electrochromic devices………………………….53 Table 2-1 Data obtained from the plot of E1/2 vs. scan rate fro both anodic and cathodic potential scans (EAg/AgCl = 0.0 to EAg/AgCl = 0.4 V). Scan rate variations = 1 to 10 mV/s, λ = 770, 460 and 375 nm………………..……71 Table 2-2 Electrochromic properties of PDMA as determined by spectrochronoamperometry……………………………………………….72 Table 4-1. Electronic parameters of ITO/PDMA/Al and ITO/POMA/Al Schottky barrier devices……………………………………………………….…109 Table 5-1. Electronic parameters of metal/PDMA/PEO (doped with SA and MSA) composite Schottky diodes……………………………………………..128 Table 5-2.Parameters obtained from impedance spectra for ITO/PDMA-PEO/Al devices……………………………………………………………...…..128 Scheme 2-1. Scheme for the PDMA redox processes………………………………..73

    1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
    2. T. P. McAndrew, TRIP., 5, 7 (1997).
    3. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
    4. S Lefrant, L.S. Lichtman, M. Temkin, D.C. Fichten, D.C. Miller, G.E. Whitwell and J.M. Burlich, Solid State Commun., 29, 191 (1979).
    5. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
    6. A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
    7. A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
    8. J. H. Schön, A. Dodabalapur, Z. Bao, Ch. Kloc, G. Schenker and B. Batlogg, Nature, 410, 189 (2001).
    9. R. L. Greene and B. R. Street, L. J. Suter, Phys. Rev. Lett., 34, 577 (1975).
    10. R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    11. G. A. Lapitskii, S. M. Makin and A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
    12. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
    13. G. Kossmehl and Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
    14. L. W. Shacklette, H. Eckhardt, R. R. Chance and R. H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
    15. P. Pfluger and O. B. Street, J. Chem. Phys., 80, 544 (1984).
    16. A. F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
    17. A. F. Diaz, K. K. Kanazawa, J. I. Castillo, J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
    18. E. M. Genies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
    19. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
    20. A. F. Diaz, A. Matninez, K. K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
    21. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
    22. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
    23. R. J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
    24. J. J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
    25. G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J. C. Scott, J. Phys. (Paris), C3, 599 (1983).
    26. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G.. B. Street, Synth. Met., 4, 119 (1981).
    27. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    28. C. K. Chiang, S. C. Gua, C. R. Fincher, Y. W. Park and A. G.. MacDiarmid, Appl. Phys. Lett., 33, 18 (1978).
    29. Y. Cao, P. Smith and A. J. Heeger, Synth. Met., 48, 91 (1992).
    30. Y. Cao and P. Smith, Polymer, 34, 3139 (1993).
    31. T. Vikki, L. O. Pietila, H. Osterholm, L. Ahjopalo, A. Takkala, A. Toivo, K. Levon, P. Passiniemi and O. T. Ikkala, Macromolecules, 29, 2945 (1996).
    32. R. F. Bay, S. P. Armes, C. J. Pickett and K. S. Ryder, Polymer, 32, 2456 (1991).
    33. L. A. Samuelson, A. Anagnostopoulos, K. S. Alva, J. Kumar and S. K. Tripathy, Macromolecules, 31, 4376 (1998).
    34. P. J. Kinlen, J. L. Ding, C. R. Graham and E. E. Resen, Macromolecules, 31, 1735 (1998).
    35. G. A. Planes, G. M. Morales, M. C. Miras and C. Barbero, Synth. Met., 97, 223 (1998).
    36. W. Yin and E. Ruckenstein, Synth. Met., 108, 39 (2000).
    37. S. A. Chen and J. M. Ni, Macromolecules, 25, 6081 (1992).
    38. S. A. Chen and C. C. Tsai, Macromolecules, 26, 2234 (1993).
    39. J. W. Chevalierr, J. Y. Bergeron and L. H. Dao, J. Am. Chem. Soc., 25, 3325 (1992).
    40. M. Ranger and M. Leclerc, Synth. Met., 84, 85 (1997).
    41. Y. Wei, J. Tan, A. G. MacDiarmid, J. G. Masters, A. L. Smith and D. Li, JCSCC, 7, 552 (1994).
    42. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
    43. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
    44. Y. Wei, X. Tang, Y. Sun and W. W. Focke, J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
    45. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., Interfacial Electrochem., 177, 281 (1984).
    46. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
    47. Y. Cao, A. Andreatta, A. J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
    48. A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis and A. J. Epstein, Synth. Met., 41-43, 621 (1991).
    49. K. Tzou and R. V. Gregory, Synth. Met., 47, 267 (1992).
    50. Y. Wei, G.-W. Jang and C. C. Chan, J. Polym. Sci. Part-C. Polymer Letters, 28, 219 (1990).
    51. Y. Wei, K. F. Hsueh and G.-W. Jang, Polymer, 35, 3572 (1994).
    52. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
    53. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34, 2434 (1993).
    54. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
    55. J. Preiza, I. Lundstrom and T. Skothiem, J. Electrochem. Soc., 129, 1685 (1982).
    56. S. L. Mu and D. H. Sun, Synth. Met., 41-43, 3085 (1991).
    57. H. J. Yang and A. J. Bard, J. Electroanal. Chem., 369, 193 (1994).
    58. D. E. Stilwell and S. M. Park, J. Electrochem. Soc., 135, 2254 (1988).
    59. S. L. Mu and J. Q. Kan, Electrochim. Acta, 41, 1593 (1996).
    60. T. J. Kemp, P. Moore and G. R. Quick, J. Chem. Res., 1981, 301 (1981).
    61. A. Malinauskas and R. Holze, Electrochim. Acta, 44, 2613 (1999).
    62. A. Malinauskas and R. Holze, Ber. Besenges. Phys. Chem., 101, 1859 (1997).
    63. A. Malinauskas and R. Holze, Electrochim. Acta, 43, 2413 (1998).
    64. J. Dresner, RCA Rev., 30, 322 (1969)
    65. 念家富,曾章和,〝有機發光二極體材料與顯示器之應用〞,電子期刊, 48, 146 (1999).
    66. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holomes, Nature, 347, 539 (1990).
    67. A. J. Heeger, Synth. Met., 57, 3471 (1993).
    68. M. Berggren, Nature, 372, 444 (1994).
    69. M. Granstron, Science, 267, 1479 (1995).
    70. M. Granstron, Adv. Mater., 7, 1012 (1995).
    71. Q. Pei, G. Yu, C. Zhang, Y. Yang and A.J. Heeger, Science, 269, 1086 (1995).
    72. Q. Pei, Y. Yang, G. Yu, C. Zhang and A.J. Heeger, J. Am. Chem. Soc., 118, 3922 (1996).
    73. D. J. Dick, A. J. Heeger, Y. Yang and Q. Pei, Adv. Mater., 8, 985 (1996).
    74. F. Fusalba, P. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc., 148, A1 (2001).
    75. A. Di Fabio, A. Giorgi, M. Mastragostino and F. Soavi, J. Electrochem. Soc., 148, A845 (2001).
    76. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
    77. M. Gerard, A. Charbey and B. D. Malhotra, Biosens. Bioelectron., 17, 345 (2002).
    78. W. J. Sung and Y. H. Bae, Anal. Chem., 72, 2177 (2000).
    79. P. R. Unwin and A. J. Bard, Anal. Chem., 64, 113 (1992).
    80. S. Pekker and A. Janossy, “Handbook of conducting polymer”, Marcel Dekker, New York, Vol. 1, p.45~47 (1986).
    81. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknedrt, Solar Energy Mater. Solar Cells. 56, 395 (1999).
    82. J. Liu and J. P. Coleman. Mater. Sci. Eng. A. 286, 144 (2000).
    83. M. O. M. Edwards, G. Boschloo, T. Gruszecki, H. Pettersson, R. Sohlberg and A. Hagfeldt. Electrochim. Acta. 464, 2187 (2001).
    84. G. C. de Vries, Electrochim. Acta. 44, 3185 (1999).
    85. M. Wigginton, Glass in Architecture, Phaidon, London, UK, 1996.
    86. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 2 (1999).
    87. C. M. Lampert. Proc. Soc. Photo-Opt. Instrum. Eng., 4458, 95 (2001).
    88. C. G. Granqvist. Int. Glass. Rev., 2, 67 (2001).
    89. C. G. Granqvist, Interface. 3, 18 (2001).
    90. A. Azens and C. G. Granqvist. J. Solid State Electrochem., 7, 64 (2003)
    91. A. Azens and C. G. Granqvist. Proc. Soc. Photo-Opt. Instrum. Eng,. 4458, 104 (2001).
    92. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    93. (a) H. Byker, in Proc. Symposium on Electrochromic Materials II, Vol. 94-2 (Eds. K. –C. Ho. D. A. MacArthur), Electrochemical Society, Pennington, NJ 1994, pp. 3-13. (b) T. F.Guarr. Private communication. C.
    94. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fun-dementias and Applications, VCH. Weinheim 1995.
    95. http://www. Nanomatgroup.com
    96. J. P. Coleman, A. T. Lynch, P. Madhukar and J. H. Wagenknecht. Solar Engery. Mater. Solar Cells. 56, 395 (1999).
    97. C. K. Chiang, S. C. Gau, C. R. Fincher Jr., Y. W. Park, A. G. MacDiarmid and A. J. Heeger, Appl. Phys. Lett., 33, 18 (1978).
    98. G. Shi, B. Yu, G. Xue and S. Jin, C. Li, J. Chem. Soc. Chem. Commun. 2459 (1994).
    99. Y. Renkuan, Y. Hang, Z. Zheng and Z. Youdou, Synth. Met., 41-43, 731 (1991).
    100. S. Miyauchi, Y. Goto, Y. Sorimachi and I. Tsubata, Synth. Met., 41-43, 1057 (1991).
    101. J. Kanicki, J. Mol. Cryst., 105, 203 (1984).
    102. P. M. Grant, T. Tani, W. D. Gill, M. Krounbi and T. C. Clarke, J. Appl. Phys., 52, 869 (1981).
    103. J. Lei, W. Liang, C. S. Brumlik and C. R. Martin, Synth. Met., 47, 351 (1992).
    104. M. Narasimhan, M. Hagler, V. Commarata and M. Thakur, Appl. Phys. Lett., 72, 1063 (1998).
    105. T. Tani, W. D. Gill, P. M. Grant, T. C. Clarke and G. B. Street, Synth. Met., 1, 301 (1979).
    106. H. Tomozawa, D. Brown, S. Phillips, A. J. Heeger and H. Kroemer, Synth. Met., 22, 63 (1987).
    107. G. Horowitz, Adv. Mater., 2, 287 (1990).
    108. Y. Ohmori, H. Takahashi, T. Kawai and K. Yoshino, Jpn. Appl. Phys., 29, L1849 (1990).
    109. A. Spetz, F. Winqist, H. Sundgren and I. Lundstrom, in: G. Sberveglieri (Ed.), Gas Sensors, Kluwer, Dordrecht The Netherlands, 1992, Chapter 7, pp. 219.
    110. A. Assadi, A. Spetz, M. Willander, C. Svenson, I. Lundstrom and O. Inganas, Sens. Actuat. B. 20, 71 (1994).
    111. S. Chen and Y. Fang, Synth. Met., 60, 215 (1993).
    112. S. C. K. Misra, M. K. Ram, S. S. Pandey, B. D. Malhotra and S. Chandra, Appl. Phys. Lett., 61, 1219 (1992).
    113. A. Watanabe, S. Murakami and K. Mori, Macromolecules 22, 4231 (1989).
    114. J. Lei, W. Liang, C. J. Brumilk and C. R. Martin, Synth. Met., 47, 351 (1992).
    115. R. Singh and A. K. Narula, Appl. Phys. Lett., 71, 2845 (1997).
    116. H. Kokado, F. Husokawa and K. Hoshino, Jpn. J. Appl. Phys., 32, 189 (1993).
    117. S. S. Pandey, M. K. Ram, V. K. Srivastava and B. D. Malhotra, J. Appl. Polym. Sci., 65, 2745 (1997).
    118. V. Saxena and K. S. V. Santhanam, Curr. Appl. Phys., 3, 227 (2003).
    119. A. Tsumura, M. Koezuka and T. Ando, Appl. Phys. Phys. Lett., 49, 1210 (1986).
    120. J. H. Burroughes, C. A. Jones and R. H. Friend, Nature 335, 137 (1988).
    121. G. Guilaud, M. Al Sadum, M. Maitrot, J. Simon and M. Bouvet, Chem. Phys. Lett., 167, 503 (1990).
    122. A. Tsumra, H. Koeza and T. Ando, Appl. Phys. Lett., 49, 1210 (1986).
    123. G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui and F. Kouki, Adv. Mater., 8, 52 (1996).
    124. A. Dodabalapur, H. E. Katz, L. Torsi and R. C. Haddon, Science 269, 1560 (1996).
    125. Z. Bao, A. Dodabalapur and A. J. Lovinger, Appl. Phys. Lett., 69, 4108 (1996).
    126. H. Sirringhaus, T. Kawasem, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, Science 290, 2123 (2000).
    127. Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997).
    128. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002).
    129. J. A. Roger, Z. Bao and V. R. Raju, Appl. Phys. Lett., 72, 2716 (1998).
    130. T. Kawase, H. Sirringhaus, R. H. Friend and T. Shimoda, Adv. Mater., 13, 1601 (2001).
    131. H. Klauk, D. J. Gundlach, J. A. Nichols and T. N. Jackson, IEEE Trans. Electron Devices 46, 1258 (1999).
    132. H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell and D. D. C. Bradley, Appl. Phys. Lett., 77, 406 (2000).
    133. N. Stutzmann, R. H. Friend and H. Sirringhaus, Science 299, 1881 (2003).
    134. K. –I. Nakayama, S. –Y. Gujimoto and M. Yokoyama, Appl. Phys. Lett., 82, 4584 (2003).
    135. M. Leclerc, J. Guay and L.H. Dao, Macromolecules, 22, 649 (1989).
    136. A.A. Athawale, B.A. Deore and M.V. Kulkami, Mater. Chem. Phys., 60, 262 (1999).
    137. Y. Wei, W.W. Focke, G.E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
    138. L.X. Wang, X.B. Jing and F.S. Wang, Synth. Met., 41, 745 (1991).
    139. F.A. Viva, E.M. Andrade, F.V. Molina and M. Florit, J. Electroanal. Chem., 471, 180 (1999).
    140. D. Goncalves, B. Matrenko and L.O.S. Bulhães, J. Electroanal. Chem., 415, 107 (1996).
    141. Gazotti, N. Comisso, G.D’Aprano and M. Leclerc, Adv. Mater., 4, 749 (1992).
    142. G. Pistoia and R. Rosati, Electrochim. Acta, 3, 333 (1994).
    143. M. Mazur, P. Krysiński, Electrochim. Acta, 46, 3963 (2001).
    144. F.R. Díaz, C.O. Sánchez, M.A. del Valle, L.H. Tagle, J.C. Bernede and Y. Tregouet, Synth. Met., 92, 99 (1990).
    145. W.E. Rudzinski, L. Thrower, R. Sutcliffe and M. Bahrami, Synth. Met., 68, 199 (1995).
    146. D. Zhou, P.C. Innis, G.G. Walace, S. Shimizu and S.I. Maeda, Synth. Met., 114, 287 (2000).
    147. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1859 (1997).
    148. A. Malinauska and R. Holze, Electrochim. Acta, 44, 2613 (1999).
    149. A. Malinauska and R. Holze, J. Solid State Electrochem., 3, 239 (1999).
    150. K. Chiba, T. Ohsaka and N. Oyama, J. Electroanal. Chem., 217, 239 (1987).
    151. N. Comisso, S. Daoli, G. Zotti, S. Zecchin, R. Salsomaso and G. Mengoli, J. Electroanal. Chem., 255, 97 (1988).
    152. T.C. Wen, L.M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
    153. W.C. Chen, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427 (2001).
    154. J.Y. Lee, X.H. Su and C.Q. Cui, J. Electroanal. Chem., 367, 71 (1994).
    155. J.Y. Lee and C.Q. Cui, J. Electroanal. Chem., 403, 109 (1996).
    156. H.S.O. Chan, S.C. Ng, W.S. Sim, K.L. Tan and B.T.G. Tan, Macromolecules, 25, 6029 (1992).
    157. M.T. Nguyen and A.F. Diaz, Macromolecules, 28, 3411 (1995).
    158. C.H. Yang and T.C. Wen, J. Electrochem. Soc., 141,2624 (1994).
    159. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
    160. L.H. Dao, J. Guay and M. Leclerc, Synth. Met., 29, E383 (1989).
    161. J. Guay, R. Paynter and L.H. Dao, Macromolecules, 23, 23 (1990).
    162. J.Y. Lee and A.J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
    163. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
    164. H. Tang, A. Kitani, and S. Ho, Electrochim. Acta, 42, 3421 (1997).
    165. S.A. Chen and G.W. Hwang, J. Am. Chem. Soc., 116, 7939 (1994).
    166. Y. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein and A.G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
    167. A.A. Karyakin, A.K. Stakhara and A.K. Yatstimirshy, J. Electroanal. Chem., 371, 259 (1994).
    168. A.A. Karyakin, I.A. Maltsev and L.V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
    169. C. G. Granuvist, E. Hvendano and A. Azens. Thin Solid Films. 442, 201 (2003).
    170. C. G. Granuvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995, reprinted 2002.
    171. C. G. Granuvist. Solar Energy Mater. Solar Cells. 60, 201 (2000).
    172. C. L. Gaupps, D. M. Welsh, R. D. Rauh and J. R. Reynolds. Chem. Mater., 14, 3964 (2002).
    173. J. Tamimoto, S. Uchida, T. Kubo and Y. Nishikitani. J. Electrochem. Soc., 50, H235 (2003).
    174. K. C. Ho. J. Electrochem. Soc., 139, 1099 (1992).
    175. L. D. Kadam and P. S. Patil. Solar Engery. Mater. Solar Cells. 70, 15 (2001).
    176. C. M. Lampert. Solar Engery. Mater. Solar Cells. 11, 1 (1984).
    177. S. K. Deb, Philos. Mag. 27, 801 (1973).
    178. M. A. Depaoli, A. F. Nogueira, D. A. Machado and C. Longo, Electrochimica Acta. 46, 4243 (2000).
    179. W. A. Gazotti. Jr., G. C. Miceli, A. Geri and M. A. Depaoli. Adv. Mater., 10, 60 (1998).
    180. K. Bange and T. Gambke. Adv. Mater., 2, 10 (1990).
    181. W. A. Gazotti, G. C. Miceli, A. Berlin and M. A. Depaoli, Adv. Mater., 10, 1522 (1998).
    182. E. M. Girotto, M. –A. Depaol, J. Braz. Chem. Soc., 10, 3944 (1999).
    183. F. Dichot, S. Ferrere, R. J. Pitts, B. A. Gregg, J. Electrochem. Soc., 146, 4324 (1999).
    184. D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. Nagaraja and D. Fitzmaurice, J. Phys. Chem. B., 104, 11449 (2000).
    185. G. Boshloo and D. Fitzmaurice, J. Phys. Chem. B., 103, 7860 (1999).
    186. H. W. Heuer, R. Wehrmann and S. Kirchmeyer, Advanced Functional Materials 12, 89 (2002).
    187. P. Chandrasekhar, B. J. Zay, G. C. Birur, S. Rawal, E. A. Pierson, L. Kauder and T. Swanson, Advanced Functional Materials 12, 95 (2002).
    188. A. A.Argun, A. Cirpan and J. R. Reynolds, Adv. Mater. 15, 1338 (2003).
    189. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater., 12, 481 (2002).
    190. I. Schwendeman, C. L. Guupp, J. M. Hancock, L. B. Groenendaal and J. R. Reynolds, Advanced Function Materials 13, 541 (2003).
    191. E. Smela, Adv. Mater., 16, 11 (1999).
    192. L. M. Huang, T. C. Wen and A. Gopalan, Synth. Met., 130, 155 (2002).
    193. L. M. Huang, T. C. Wen and A. Gopalan, Electrochimica Acta 46, 2463 (2001).
    194. T. C. Wen, L. M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
    195. S. Taunier, G. Guery, J. –M. Tarascon, Electrochim. Acta 44, 3219 (1999).
    196. K. –C. Ho. Electrochim. Acta 44, 3227 (1999).
    197. K. –C. Ho, L. –C. Chen, C. –C. Lee, Proc. Soc. Photo-Opt. Instrum. Eng., 3788, 120 (1999).
    198. B. P. Jelle, G. Hagen, J. Appl. Electrochem., 29, 1103 (1999).
    199. R. Lechner, L. K Thomas, Solar Energy Mater. Soalr Cells 54, 139 (1998).
    200. X. Zhang, L. Su, Z. Lu, Jap. J. Appl. Phys., 38, 770 (1999).
    201. A. Pennisi, F. Simone, G. Barletta, G. Di Marco, M. LAnza, Electrochim. Acta 44, 3237 (1999).
    202. D. S. Lee, D. D. Lee, H. R. Huang, J. H. Pail, J. S. Huh, J. O. Lim, J. J. Lee, J. Mater. Sci. Mater. Electr., 12, 41 (2001).
    203. J. M. G. Cowie, in : J. R. MacCallum, C. A. Vincent (Eds), Polymer Electrolyte Reviews-1, Elsevier, Essex, 1987, p. 69.
    204. W. Wieczorek, K. Such, Z. Florjanczyk, J. Przyluski, Electrochim. Acta 37, 1565 (1992).
    205. J. L. Acosta, E. Morales, J. Appl. Polym. Sci., 60, 1185 (1996).
    206. S. Kohjiva, S. Takesako, Y. Ykeda, S. Yamashita, Polyme. Bull., 23, 299 (1990).
    207. N. Minichandraiah, L. G. Scalon, R. A. March, B. Kumar, A. K. Sircar, J. Appl. Electrochem., 24, 1066 (1994).
    208. W. A. Gazotti, M. A. Spinace, E. M. Girotto, M. –A. Depaoli, Solid State Ionics 130, 281 (2000).
    209. 李維明,”固態電子學”,P.286-292.
    210. B. G. Streetman, “Solid State Electronic Devices”, P. 184-187.
    211. M. L. Liu, S. J. Visco and L. C. Dejonghe, J. Electrochem. Soc., 138, 1896 (1991).
    212. M. M. Doeff, M. M. Lerner, S. J. Visco and L. C. Dejonghe, J. Electrochem. Soc., 139, 2077 (1992).
    213. M. L. Liu, S. J. Visco, L. C. Dejonghe, J. Electrochem. Sco., 138, 1891 (1991).
    214. W. A. Gazotti, R. Faez and M. A. Depaoli, J. Electroanal. Chem., 415, 107 (1996).
    215. B. P. Jelle, G. Hagen and S. Nodland, Electrochim Acta 38, 1497 (1993).
    216. N. Leventis and Y. C. Chung, J. Electrochem. Soc., 137, 3321 (1990).
    217. X. L. Wei and A. J. Epstein, Synth. Met., 74, 123 (1995).
    218. R. V. Gregory and R. Jain, Synth. Met., 74, 263 (1995).
    219. J. W. Chevalier, J. Y. Bergeron and L. H. Dao, Macromolecules 25, 3325 (1992).
    220. K. G. Neoh, M. Y. Pun, E. T. Kang and K. L. Tan, Synth. Met., 73, 209 (1995).
    221. C. R. Diaz, E. S. Matveeva and V. P. Parkhutil, J. Non-Cryst. Solids 180, 260 (1995).
    222. A. J. Epstein and A. G. MacDiarmid, Makromol. Chem. Macromol. Symp. 51, 217 (1991).
    223. G. Zotti, G. Dparano and M. Leclerc, Macromolecules 25, 2145 (1992).
    224. G. D. Storrier, S. B. Colbran and D. B. Hibbert, Synth. Met., 62, 179 (1994).
    225. M. C. Bernard and A. H. L. Goff, Surf. Interface Anal., 19, 1 (1992).
    226. H. J. Yang and A. J. Bard, J. Electroanal. Chem., 339, 423 (1992).
    227. D. E. Stilwell and S. M. Park, J. Electrochem. Soc., 135, 427 (1989).
    228. Y. B. Shim, M. S. Won and S. M. Park, J. Electrochem. Soc., 137, 538 (1990).
    229. B. Plays, A. Kudelski, A. Stankiewiez and K. Jackoswska, Synth. Met., 108, 111 (2000).
    230. A. Malinauskas and R. Holze, Synth. Met., 97, 31 (1998).
    231. H. Tang, A. Kitani and M. Shiotani, Electrochim. Acta 41, 1561 (1996).
    232. C. Odin and M. Nechtschein, Phys. Rev. Lett., 67, 1114 (1991).
    233. D. Goncalves, A. Waddon, F. E. Karasz and L. Akcelrud, Synth. Met., 74, 197 (1996).
    234. K. Naoi, K. Kawase and Y. Inoue, J. Electrochem. Soc., 144, L170 (1997).
    235. K. Naoi, M. Menda, H. Ooike and O. Oyama, J. Electroanal. Chem., 318, 395 (1991).
    236. N. Oyama, T. Tatsuma, T. Sato and T. Sotomura, Nature (London) 373, 598 (1995).
    237. D. M. Deleeuw, M. M. J. Simenon, A. R. Brown and R. E. F. Einerhand, Synth. Met., 87, 53 (1997).
    238. M. Josowicz and J. Janata, Anal. Chem., 58, 514 (1986).
    239. R. A. Bull, F. R. Ran and A. J. Bard, J. Electrochem. Soc., 131, 687 (1984).
    240. W .A. Gazotti, G. Casalboremiceli, S. Mitzakoff, A. Grei, M. C. Gallazzi and M. A. Depaoli, Electrochim. Acta 44, 1965 (1999).
    241. S. K. Deb, Sol. Eng. Mater., 25, 327 (1992).
    242. C. G. Granqvist, Solid State Ionics 53, 479 (1992).
    243. B. Scrosati, Laminated electrochromic displays and windows, in: B. Scrosati (Ed.), Applications of Electroactive Polymers, Chapman & Hall, London, 267 (1993).
    244. M. A. Depaoli, S. Panero, P. Prosperi and B. Scrosati, Electrochim Acta 35, 1145 (1990).
    245. R. C. D. Peres, J. M. Pernaut and M. A. Depaoli, Synth. Met., 28, C59 (1989).
    246. E. A. R. Duck and M. A. Depaoli, Adv. Mater., 4, 287 (1994).
    247. E. A. R. Duck, M. A. Depaoli and M. Mastragostino, Adv. Mater., 5, 650 (1993).
    248. E. L. Tassi, M. A. Depaoli, S. Panero and B. Scrosati, Polymer 35, 565 (1994).
    249. W. C. Chen, T. C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427 (2001).
    250. K. Yamanaka, J. Appl. Phys., 26, 1884 (1987).
    251. P. Bandry, M. A. Aegrter, D. Derdo and B. Valla, J. Electrochem. Soc., 123, 315 (1976).
    252. C. G. Granqvist, Solid. Stat Ionics 13, 213 (1993).
    253. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997).
    254. J. A. Roger, Z. Bao, and V. R. Raju, Appl. Phys. Lett. 72, 2716 (1998).
    255. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, Adv. Mater. 13, 1601 (2001).
    256. J. T. Lei, W. B. Liang, C. J. Brumlik and C. R. Martin, Synth. Met., 47, 351 (1992).
    257. N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarman and N. Theophilou, Nature 327, 403 (1987).
    258. M. J. Sailor, F. L. Klavetter, R. H. Grubbs, N. S. Lewis, Nature 346, 155 (1990).
    259. C. H. Yang, J. Electrochem. Soc., 146, 1939 (1999).
    260. E. Punkka and M. F. Rubner, Synth. Met., 42, 1509 (1991).
    261. I. B. Nazarova, V. I. Krinichnyi and M. Goldenberg, Synth. Met., 53, 399 (1993).
    262. H. Koezuka and S. Etoh, J. Appl. Phys., 54, 177 (1982).
    263. J. Tsukamotto and H. Obigashi, Synth. Met., 4, 177 (1982).
    264. S. S. Pandey, S. C. K. Misra, B. D. Malhotra and S. Chandra, J. Appl. Polym. Sci., 44, 911 (1992).
    265. J. Kanicki, in: T. A. Skotheim (Ed.), “Handbook of Conducting Polymers”, Marcel Dekker, New York, 1986, p. 545.
    266. W. Bantikassegn and O. Inganas, J. Phys. D: Appl. Phys. 29, 2971 (1996).
    267. M. Chen, D. Nillson, T. Kugler and M. Berggren, Appl. Phys. Lett., 81, 2011 (2002).
    268. R. Gupta, S. C. K. Misra, B. D. Malhotra, N. N. Beladarkere and S. Chandra, Appl. Phys. Lett., 58, 51 (1991).
    269. H. Tomozawa, D. Braum, S. D. Phillips, H. Kroemer, R. Worland and A. J. Heeger, Synth. Met., 28, C687 (1989).
    270. F. Garnier, G. Horowitz and D. Fichou, Synth. Met., 28, C705 (1989).
    271. L. M. Huang, T. C. Wen and A. Gopalan, Mater. Chem. Phys., 77, 155 (2002).
    272. S. M. Sze, “Physics of Semiconductor Devices”, Wiley, New York, 155.
    273. W. Bantikassegn and O. Inganas, Synth. Met., 87, 5 (1997).
    274. S. Angappane, N. R. Kini, T. S. Natarajan, G. Rangarajan and B. Wessling, Thin Solid Films 417, 202 (2002).
    275. K. S. Alva, J. Kumar, K. A. Marx and S. K. Tripathy, Macromolecules 30, 4024 (1997).
    276. V. Rajendran, A. Gopalan, T. Vasudevan and T. C. Wen, J. Electrochem. Soc., 141, 3014 (2000).
    277. J. Yue, A. J. Epstein and A. G. Macdiarmid, Mol. Cryst. Liq. Cryst., 189, 255 (1990).
    278. M. K. Ram, E. Maccioni and C. Nicolini, Thin Solid Films 303, 27 (1997).
    279. J. Tauc, in: J. Tauc (Ed.). Amorphous and Liquid Semicondcutors, Plenum Press, London, 1974 (Chapter 4).
    280. K. Tanikawa, Z. Okuno, T. Iwaoka and M. Hatano, J. Appl. Phys., 48, 2424 (1977).
    281. J. H. Burroughes, C. A. Jones and R. H. Friend, Synth. Met., 28, C735 (1989).
    282. Y. E. Wang, S. Miyata in: W. R. Salaneck, I. Lundstrom and B. Ranby (Eds.), Conjugated Polymers and Related Materials, Oxford Science Publications, 1993, chapter 11, p. 149.
    283. S. Dogan, U. Akbulut, T. Yalcin, S. Suzer and L. Toppare, Synth. Met., 62, 2001 (1994).
    284. H. L. Wang, L. Toppare and J. E. Fernandez, Macromolecules, 23, 1053 (1990).
    285. B. Wessling, EP 0168 620 (priority: 1984).
    286. D. Srinivasan, G. Rangarajan, T. Mietzner, W. Lennartz and B. Wessling, Eur. Phys. J. E., 2, 207 (2002).
    287. R. Cabala, V. Meister, K. P. Kamloth, J. Chem. Soc. Faraday Trans., 93, 131 (1997).
    288. S. Folch, A. Gruger, A. Regis and Ph. Colomban, Synth. Met., 81, 221 (1996).
    289. A. Bozkurt, C. Ercelebi and L. Toppare, Synth. Met., 87, 219 (1997).
    290. M. Campose and B. Bellow, Jr, J. Phys. D: Appl. Phys., 26, 1274 (1993).

    下載圖示 校內:立即公開
    校外:2004-06-23公開
    QR CODE