| 研究生: |
洪鈺珉 Hung, Yu-Ming |
|---|---|
| 論文名稱: |
五環素與四環素有機薄膜電晶體在彎曲下載子傳輸特性之研究 Carrier Transports in Flexible Pentacene- and Tetracene-Based Thin Film Transistors under Bending Conditions |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 有機薄膜電晶體 、載子傳輸 、彎曲實驗 、分子間耦合作用力 、重組能 |
| 外文關鍵詞: | organic thin film transistors, carrier transports, bending conditions, intermolecular coupling, reorganization energy |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討五環素與四環素製備之有機薄膜電晶體在彎曲實驗之下的載子傳輸特性。首先利用彎曲後蒸鍍之方式製作具有壓縮應力(內彎曲)的半導體薄膜,製作成彎曲有機薄膜電晶體,與未彎曲的有機薄膜電晶體進行相互比較與討論。電晶體在內彎曲後之載子移動率會有明顯提升,與文獻所研究結果相符合。五環素電晶體在內彎曲後之載子移動率上提升了25.8%,而在四環素電晶體提升為2.1%。在驗證部分,利用X光繞射儀與紫外光/可見光光譜儀來進行分析後,發現有機薄膜電晶體在內彎曲下之載子傳輸,不僅受到文獻上所強調之分子耦合作用力提升影響,亦須考量重組能在彎曲之後所造成之影響;而此兩項因子的提升,所造成之載子跳躍率變化,也更加符合實驗中電晶體載子移動率的變化,達到更準確了解有機薄膜電晶體在內彎曲下與電性變化效果之關係。本實驗提出一個簡單的驗證模式,來探討有機薄膜電晶體內彎曲後載子移動率變化,也因此提供了一個簡易的方法,來選擇有機半導體材料應用於軟性電子領域等上。
Pentacene- and tetracene-based thin film transistors under bending conditions are demonstrated. Transistors with compressive strain showed improvement in field effect mobility which was greater in pentacene transistors but only slight enhancement in tetracene transistors. The intermolecular coupling (transfer integral) effect is verified through theoretical calculation of Davydov Splitting from X-ray diffraction (XRD) and experimental results of ultraviolet/visible light (UV/VIS) spectra measurement. More information about reorganization energy is provided in UV/VIS spectra which also play a critical role in dominating the carrier transport. The data of XRD and UV/VIS spectra provide appropriate measurements for choosing organic electronic materials in bending applications.
[1] P.G. Le Comber, A.J. Snell, K.D. Mackenzie, and W.E. Spear, “Applications of a-si field effect transistors in liquid crystal displays and in integrated logic circuits,” J. de physique, vol. 42, no. C4, pp. 423-432, Oct. 1981.
[2] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic device Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, p. 1210, 1986.
[3] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Commun., vol. 72, p. 381, 1989.
[4] H. E. Katz, “Organic molecular solids as thin film transistor semiconductors,“ J. Mater. Chem., vol. 7, p. 369, 1997.
[5] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., vol. 14, p. 99, 2002.
[6] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson,” Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron. Device Lett., vol. 18, pp. 606-608, 1997.
[7] C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. J. Li, T. J. Huang, D. W. Chou, and T. H. Wang, “Pentacene-based thin film transistors with a solution-process hafnium oxide insulator,” IEEE Electron. Device Lett., vol. 30, pp. 1039-1041, Sep. 2009.
[8] T. Cahyadi, J. Kasim, H. S. Tan, S. R. Kulkarni, B. S. Ong, Y. Wu, Z.-K. Chen, C. M. Ng, Z.-X. Shen, and S. G. Mhaisalkar, “Enhancement of Carrier Mobilities of Organic Semiconductors on Sol-Gel Dielectrics: Investigations of Molecular Organization and Interfacial Chemistry Effects,” Adv. Funct. Mater., vol. 19, no. 3, pp. 378-385, 2009.
[9] J. R. Ares, A. Pascual, I. J. Ferrer, and C. Sanchez, “Grain and crystallite size in polycrystalline pyrite thin film,” Thin Solid Films, vol. 480-481, pp. 477-481 Mar. 2005.
[10] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene thin film growth,” Chem. Mater., vol. 16, pp. 4497-4508, Sep. 2004.
[11] X. H. Zhang, W. J. Potscavage, Jr., S. Choi, and B. Kippelen, “Low-voltage flexible organic complementary inverters with high noise margin and high dc gain,” Appl. Phys. Lett., vol. 94, no. 4, p. 043312, 2009.
[12] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” PNAS, vol. 102, no. 35, pp. 12321-12325, Mar. 2005.
[13] T. Sekitani, Y. Kato, S. Iba, H. Shinaoka and T. Someya, ”Bending experiment on pentacene field-effect transistors on plastic films,” Appl. Phys. Lett., vol. 86, p. 073511, Feb. 2005.
[14] H. L. Cheng, W. Y. Chou, C. W. Kuo, and F. C. Tang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” Appl. Phys. Lett., vol. 88, pp. 161918-161918-3, Jun. 2006.
[15] H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar,, J. Kasim, Z. X. Shen, and F. R. Zhu, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors,” Appl. Phys. Lett., vol. 93, pp. 183503-183503-3, Nov. 2008.
[16] H. Morkoc, ”Advaced semiconductor and organic nano techniques,” Academic Press, U. S., 193, 2003.
[17] Wikipedia, “Pi Bond.”
[18] Wikipedia, “Benzene”
[19] J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, ”Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport,” PNAS, vol. 99, no. 9, pp. 5804-5809, Dec. 2001.
[20] 真島 豊, “ 半導体物性”, Tokyo Tech Open Course Ware
[21] B. A. Paez-Sierra, “Raman spectroscopy of metal/organic/inorganic hetero structures and pentacene-based OFETs”, Technische Universität Chemnitz, 2007.
[22] S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han, and W. A. Goddard III, “First-principles investigation of anisotropic hole mobilities in organic semiconductors,” J. Phys. Chem. B, vol. 113, no. 26, pp. 8813-8819, Jun. 2009.
[23] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T.G. Bill, and J. L. Bre´das, “Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions,” Phys. Rev. Lett., vol. 89, no. 27, pp. 275503.1-275503.4, Dec. 2002.
[24] H. L. Cheng, X. W. Liang, W. Y. Chou , Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors,” Org. Electron., vol. 10, pp. 289-298, Dec. 2008.
[25] H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K. K. Okudaira, and N. Ueno, “Hole-vibration coupling of the highest occupied state in pentacene thin films,” Phys. Rev. B, vol. 72, no. 15, pp. 153412-153412-4, Oct. 2005.
[26] M. Kitamura, and Y. Arakawa, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates,” Appl. Phys. Lett.., vol. 91, no. 5, pp. 053505-053505-3, Jun. 2007.
[27] D. Gupta, M. Katiyar, and D. Gupta, “An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation,” Org. Electron., vol. 10, pp. 775-784, Apr. 2009.
[28] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu, and S. G. Mhaisalkar, “The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors,” Appl. Phys. Lett., vol. 94, no. 26, pp. 263303-263303-3, Jul. 2009.
[29] L. Huang, D. Rocca, S. Baroni, K. E. Gubbins, and M. B. Nardelli, “Molecular design of photoactive acenes for organic photovoltaics,” J. Chem. Phys., vol. 130, pp. 194701-194701-7, May 2009.
[30] H. Xiao, “Introduction to semiconductor manufacturing technology”, Princeton-Hall Inc., New Jersey, 2001.
[31] http://dtfl.snu.ac.kr/research2/ol/electrode.htm
[32] C. H. Hsiao, “Growth of ii-vi compound semiconductors and their optoelectronic properties - dissertation for doctor of science,” NCKU, pp. 69-74, 2010.
[33] http://www.ece.utep.edu/.../cdte/Fabrication/index.htm
[34] http://www.afmuniversity.org/index.cgi?CONTENT_ID=316
[35] http://cmnst.ncku.edu.tw/files/11-1023-2577.php
[36] P. Syed Abthagir, Young-Geun Ha, Eun-Ah You, Seon-Hwa Jeong, Hoon-Seok Seo, and Jong-Ho Choi, “Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method,” J. Phys. Chem. B, vol. 109, pp. 23918-23924, Oct. 2005.
[37] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wnag, Y. S. Mai, F. C. Tang, and S. W. Chu, “Influence of electric field on microstructures of pentacne thin films in field-effect transistors,” Adv. Funct. Mater., vol. 18, pp. 285-293, 2008.
[38] S. Milita, C. Santato, and F. Cicoira, “Structural investigation of thin tetracene films on flexible substrate by synchrotron X-ray diffraction,” Appl. Surf. Sci., vol. 252, pp. 8022-8027, Jun. 2006.
[39] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films,” Adv. Funct. Mater., vol. 17, pp. 3639-3649, Feb. 2007.
[40] T. Rada, Q. Chen, and N. V. Richardson, “Scanning tunneling microscopy of tetracene on Si(100)-2 × 1,” J. Phys.: Condens. Matter., vol. 15, no. 38, pp. S2749-S2756, Sep. 2003.
[41] D. A. da Silva Filho, E.-G. Kim, and J.-L. Bredas, “Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy,” Adv. Mater., vol. 17, no. 8, pp. 1072-1076, Dec. 2004.
[42] A. S. Davydov, “Theory of molecular excitons.” McGraw-Hill, New York, NY, chp. 2, pp. 24-27, 1971.
[43] M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. Kováč, R. Scholz, and F. Schreiber, ”Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer,” J. Chem. Phys., vol. 130, pp. 214507-214507-6, Jun. 2009.
[44] T. Jentzsch , H. J. Juepner, K. W. Brzezinka, A. LauSGH, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films, vol. 315, pp. 273-280, Sep. 1997.
[45] F. S. Wilkinson, R. F. Norwood, J. M. McLellan, L. R. Lawson, D. L. Patrick, “Engineered growth of organic crystalline films using liquid crystal solvents,” J. Am. Chem. Soc., vol. 128, no. 51, pp. 16468-16469, Aug. 2006.
[46] S. Guha , J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H.R. Chandrasekhar, R. Guentner, P. Scandiucci de Freitas and U. Scherf, “Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B., vol. 67, pp. 125204-125204-7, Mar. 2003.
[47] F. C. Wu, H.-L. Cheng, C. H. Yen, J. W. Lin, S.-J. Liu, W.-Y. Chou and F. C. Tang, “Electron transport properties in fluorinated copper–phthalocyanine films: importance of vibrational reorganization energy and molecular microstructure,” Phys. Chem. Chem. Phys., vol. 12, pp. 2098-2106, Jan. 2010.
[48] H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K. K. Okudaira and N. Ueno, “Hole-vibration coupling of the highest occupied state in pentacene thin films,” Phys. Rev. B., vol. 72, pp. 153412-153412-4, Oct. 2005.
[49] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, and C. Nuckolls, “Resonant Raman scattering in nanoscale pentacene films,” Appl. Phys. Lett., vol. 84, pp. 987-989, Oct. 2003.