簡易檢索 / 詳目顯示

研究生: 宋宏建
Sung, Horng-Jiann
論文名稱: 應用表面聲波驅動流體之介電泳場流分離法
The Application of Surface Acoustic Wave Pump in DEP Field-Flow Fractionation
指導教授: 呂宗行
Leu, Tzong-SHyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: 平板波介電泳場流分離法表面聲波
外文關鍵詞: numerical simulation, Surface acoustic wave, DEP-FFF, flexural plate wave
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統所強調的就是整合的功能,因此設計一平板波(flexural plate wave)與介電泳場流分離法(DEP Field-Flow Fractionation, FFF)整合的粒子分類晶片。由於平板波和介電泳力場流分離法的驅動皆利用指叉型電極(IDT)來當作一個功、能轉換的媒介,因此構想設計在壓電基材上製造出表面聲波(surface acoustic wave)推進流體並且結合介電泳場流分離法的微分類晶片,傳統之介電泳場流分離法晶片,在其作動時勢必須要微量幫浦(syringe pump)推動微管道內之流體,但本晶片在管道內部設計以平板波驅動流體之機制,所以只需供給相符合之電源供應,即可以在所設計之微晶片上完成粒子的推進與分離。本研究主要在模擬微管道內流體受表面波的影響作動幫浦之效果,其中探討不同微管道進出口邊界條件所造成的影響,也討論在微管道內關鍵性的參數,如振幅、波長、頻率、管深、管長等。在介電泳場流分離法方面,主要探討在有介電層影響時,透過介電層衰退後介電泳力對於粒子在管道內的漂浮情形。
    本研究成功地模擬在微管道內以平板波驅動流體的重要相關參數,以及介電層對於粒子漂浮高度的影響,以此做為依據給予之後實驗時重要的設計參考依據。

    Mems emphasizes integration and multi-function. This study designs a chip for pumping and separating particles by means of flexural plate wave and DEP-FFF. FPW and DEP-FFF are actuated by interdigital transducer (IDT) to transform work and energy, so this study produces surface acoustic waves on piezoelectric substrate and combines it with DEP-FFF. Traditional DEP-FFF use syringe pump to driving liquid in micro channels; however, with flexural plate waves pumping water, this study applies driving voltage of pumping and particle separating.
    This study investigates micro pumping system and flow field generated by an traveling wave boundary layer, which is developed for flexural plate wave device numerically. In this study, different parameters including frequency, channel height, channel length, wave length, amplitude, and boundary condition are investigated. This study explores the particle levitation8 with dielectric layer on the device.
    This study with great success simulates pumping fluid in micro channel by using flexural plate waves, and based on the simulation results, proposes suggestion for the future experiment.

    摘要 I Abstract III 誌謝 IV 表目錄 VIII 圖目錄 IX 符號表 XVI 第一章 緒論 1 1-1 前言 1 1-2 表面波傳 2 1-3 壓電效應(Piezoelectric effect) 2 1-4 常見壓電基材 3 1-5 文獻回顧 4 1-6 研究動機與本文架構 5 第二章 理論分析 10 2-1 平板波邊界條件方程式 10 2-2 介電泳力 11 第三章 數值模擬分析 15 3-1 流場模組 (Flow module) 16 3-1-1 質量守恆方程式 16 3-1-2 動量守恆方程式 16 3-2 網格變動模組 (Grid deformation module) 17 3-3 粒子模組 (Spray module) 18 3-4 電場模組(electric module) 19 3-5 介電泳力之模式 20 3-6 網格密度測試 22 3-7 模型建立 23 3-8 週期相位 24 3-9 暫態行為結束之探討 24 第四章 數值模擬結果與討論 30 4-1 平板波(FPW)-固定進出口端循環邊界條件(cyclic boundary condition) 30 4-1-1 管道深度(H)之探討 31 4-1-2 頻率(f)之探討 33 4-1-3 振幅(A)之探討 34 4-1-4 波長之探討 35 4-2 平板波(FPW)固定進出口壓力為零大氣壓邊界條件(Pin=Pout=0atm) 36 4-2-1 管道深度(H)之探討 36 4-2-2 頻率(f)之探討 37 4-2-3 振幅(A)之探討 38 4-2-4 波長之探討 39 4-2-5 管長(L)之探討 40 4-3 平板波(FPW)進出口端有背景壓力邊界條件(back pressure condition) 41 4-4 介電泳場流分離法(DFP-FFF) 43 4-5 結果與討論 45 4-5-1 循環邊界條件(Cyclic boundary condition)與固定零大氣壓邊界條件(Pin=Pout=0atm) 46 4-5-2 循環邊界條件下各參數之討論 49 4-5-3 波長之討論 51 4-5-4 振幅(A)之討論 52 4-5-5 背景壓力之討論 52 4-5-6 介電層薄膜之討論 53 第五章 結論 95 參考文獻 98 自述 102

    [1] Lord Rayleigh,“On wave propagated along the plane surface of anelastic solid” ,
    [2] Haiyan Li, James R. Friend and Leslie Y. Yeo, “A scaffold cell seeding method driven by surface acoustic waves” Biomaterials, 28 pp.4098–4104, 2007
    [3] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett., Vol. 7, pp.341-316, 1965
    [4] Donald C. Malocha,“Evolution of the saw transducer for communication systems”, Ultrasonics Symposium, Vol. 1, pp302—310, 2004
    [5] The piezoelectric efflect http://www.aurelienr.comelectroniquepiezopiezo.pdf
    [6] M. K. Tan, J. R. Friend and L. Y. Yeo,“Surface acoustic wave driven microchannel flow”, australasian Fluid mechanics conference, 16, pp790-793, 2007
    [7] Jinjie Shi, Xiaole Mao, Daniel Ahmed, Ashley Colletti and Tony Jun Huang, “focusing microparticles in a microfluidic channel with standing surface acoustic waves”, Lab chip, 8, pp221-223, 2008
    [8] Z. Guttenberg et al, “flow profiling of a surface-acoustic-wave nanopump”, PHYSICAL REVIEW, E 70 056311, pp1-10, 2004
    [9] D. Beyssen, L. Le Brizoual, O. Elmazria and P. Alnot, “Microfluidic device based on surface acoustic wave”, Sensors and Actuators B, 118, pp380-385, 2006
    [10] Christoph J. Strobl, Zeno von Guttenberg, and Achim Wixforth, “nano- and pico-dispensing of fluids on planar substrates using saw”, ieee transactions on ultrasonics, Vol. 51, pp 1432-1436, 2004
    [11] Wei-Kuo Tseng et al, “Active micro-mixers using surface acoustic waves on Y-cut 128LiNbO3”, J. Micromech. Microeng., 16, pp539-548, 2006
    [12] Daisuke Fukuoka and Y. Utsumi, “Fabrication of the cyclical fluid channel using the surface acoustic wave actuator and continuous fluid pumping in the cyclical fluid channel”, Microsyst Technol, 2008
    [13] Matthias F. Schneider et al, “An acoustically driven microliter flow chamber on a chip for cell-cell and cell-surface interaction studies”, ChemPhysChem, 9, pp641-645, 2008
    [14] Min-Chien Tsai, Tzong-Shyng. Leu, “The study of flexible plate wave device for micro pumping system”, Conference on Nano/Micro Engineered and Molecular Systems, pp452-457, 2007
    [15] N. T. Nguyen, R. W. Doering, A. La and R. M. White, “Computational fluid dynamics modeling of flexural plate wave pumps”, IEEE ULTRASONICS SYMPOSIUM, pp431-434, 1998
    [16] Nam-Trung Nguyen and Richard M. White, “Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification”, ieee transactions on ultrasonics, Vol. 47 no. 6, pp1463-1471, 2000
    [17] Toshiku Sashida and Takashi Kenjo, “An introduction to ultrasonic motors”, pp129, 1993
    [18] 翁志遠,“介電泳場流分離法之數值模擬與實驗研究”, 國立成功大學 航空太空工程學系 碩士論文
    [19] J. J. Feng, S. Krishnamoorthy, Z. J. Chen, V. B. Makhijani, Numerical and analytical studies of ac electric field in dielectrophoretic electrode arrays, NanoTech., Vol. 2, pp85-88, 2002
    [20] Abhijit Sathaye and Amit Lal,“An acoustic vortex generator for microfluidic particle entrapment”, Ultrasonics Symposium, Vol. 1, pp641-644, 2001
    [21] R. M. Moroney, R. M. White, and R. T. Howe, “Microtransport induced by ultrasonic lamb waves”, Appt. Phys. Lett., 59, pp774-776, 1991

    下載圖示 校內:2011-08-22公開
    校外:2011-08-22公開
    QR CODE