簡易檢索 / 詳目顯示

研究生: 劉文恭
Liu, Wen-Kung
論文名稱: 方形容器內氧化鋁-水奈米流體之自然對流熱傳之實驗研究
An Experimental Study of Natural Convection Heat Transfer of Al2O3-Water Nanofluid in a Square Cavity
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 49
中文關鍵詞: 方形封閉容器自然對流熱傳遞奈米流體
外文關鍵詞: Nanofluids, Square enclosure, Natural convection
相關次數: 點閱:147下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係以實驗方式探討直立方形封閉容器內Al2O3-水奈米流體自然對流熱傳遞特性。實驗所用奈米流體係將氧化鋁 (Al2O3) 奈米微粒分散於超純水中,並藉由靜電排斥力保持其穩定的懸浮狀態;且就所調製成之奈米流體測定其相關熱物理性質,諸如懸浮微粒粒徑大小分佈、黏滯係數、熱傳導係數等,隨微粒濃度與溫度之變化情形。本文探討直立方形封閉容器其物理模型為左/右直立壁分別為加熱/冷卻等溫壁面,其餘邊壁則為絕熱壁。熱傳實驗之主要參數及其值範圍分別為:萊利數,Ra = 7×10^5 ~4×10^6 ;奈米微粒體積濃度,Cv=0.1%、0.3%、1%、2%、3%、4%。本文所得實驗結果顯示封閉容器內Al2O3-水奈米流體之自然對流熱傳係數呈現隨其微粒體積濃度的增加而持續下降之趨勢,且皆低於純水之結果。

    The present study deals with natural convection heat transfer characteristics in a vertical square enclosure filled with Al2O3-Water nanofluid. The nanofluid considered was prepared by dispersing various amount of alumina (Al2O3) nanoparticles in pure water as the base fluid through electrostatic stabilization mechanisms. In addition, thermophysical properties of the nanofluid prepared including the particle size, dynamic viscosity, and thermal conductivity were measured as a function of the volumetric fraction of the nanoparticles as well as temperature. The enclosure is heated differentially across the two vertical isothermal walls, while the other side-walls are thermally insulated. The heat transfer experiments for natural convection in the enclosure have been undertaken for the relevant parameters in the following range: Rayleigh number, Ra = 7×10^5 ~4×10^6, the volume fraction of nanoparticles,
    Cv=0.1%,0.3%,1%,2%,3%,4%. The results obtained for the averaged heat transfer coefficient over the isothermally heated wall reveal a systematic decrease in the heat transfer rate of the nanofluid, in comparison with that of pure water, across the enclosure with increasing particle concentration.

    第一章 序論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 研究目的 5 1-4 本文架構 5 第二章 奈米流體製備及熱物性質量測 6 2-1 奈米流體 6 2-1-1酸鹼度對奈米流體之影響 6 2-1-2奈米流體之製備 7 2-2 熱物性質量測 7 2-2-1 粒徑量測 7 2-2-2 黏度量測 8 2-2-3 熱傳導係數量測 9 2-3 自然對流實驗 10 2-3-1實驗模型之主要結構 11 2-3-2實驗周邊裝置 14 2-3-3實驗方法與步驟 15 2-3-4實驗數據換算 16 2-3-5不準度分析 19 第三章 結果與討論 21 3-1奈米流體熱物性質量測結果 21 3-1-1 粒徑 21 3-1-2 動力黏度 22 3-1-3 熱傳導係數 25 3-2 自然對流熱傳實驗結果與討論 28 第四章 結論與未來方向 35 參考文獻 37 附錄A 容積性質的計算 41 附錄B 不準度分析 43 附錄C 自然對流實驗熱物性質 46 附錄D 自然對流實驗參數(超純水+氧化鋁) 47 附錄E 各溫差下對流係數與熱量(超純水+氧化鋁) 48

    Choi, S. U. S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles”, Developments and Applications of Non-Newtonian Flows, Siginer DA, Wang HP (eds) FED vol. 231/MD-vol. 66, ASME, New York, pp 99-105, 1995.
    Choi, S. U. S., Eastman, J. A., Li, S., Yu, W., and Thompson, L. J., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, Vol. 78, No.6, pp 474-480, 1999.
    Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids”, Transactions of ASME, Journal of Heat Transfer, Vol. 125, pp. 567-574, 2003.
    Hwang, K. S., Lee, J. H., and Jang, S. P., “Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity”, International Journal of Heat and Mass Transfer, Vol. 50, pp. 4003-4010, 2007.
    Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863, 2002.
    Khanafer, K., Vafai, K., and Lightstone, M., “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 3639-3653, 2003.
    Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Transactions of ASME, Journal of Heat Transfer, Vol.121, pp. 280–289, 1999.
    Lee, D., Kim, J. W., and Kim, B. G., “A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension”, Journal of Physical Chemistry B, Vol. 110, pp. 4323-4328, 2006.
    Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N., “Alteration of Thermal
    Conductivity and Viscosity of Liquids by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine particles)”, Netsu Bussei (Japan) 4, pp. 227–233, 1993.
    Maïga, S. E. B., and Nguyen, C. T., “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube”, Superlattices and Microstructures 35 , pp.543-557, 2004.
    Nnanna, A. G. A., “Experimental Model of Temperature-Driven Nanofluid”, Transactions of the ASME, Journal of Heat Transfer, Vol. 129, pp. 697-704, 2007.
    Pak, B., and Cho, Y. I., “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles”, Experimental Heat Transfer, Vol. 11, pp. 151-170, 1998.
    Prasher, R., Bhattacharya, P., and Phelan, P. E., “Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids”, Transactions of the ASME, Journal of Heat Transfer, Vol. 128, pp. 588-595, 2006.
    Prasher, R., Phelan, P. E., and Bhattacharya, P., “Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)”, Nano Letters, Vol. 6, pp. 1529-1534, 2006.
    Putra, N., Roetzel, W., and Das, S. K., “Natural Convection of Nano-Fluids”, Heat and Mass Transfer, Vol. 39, pp. 775-784, 2003.
    Roy, G., Nguyen, C. T., Doucet, D., Suiro, S., and Mar, T., “Temperature Dependent Thermal Conductivity Evaluation of Alumina Based Nanofluids”, Annals of the Assembly for International Heat Transfer Conference 13, 2006.
    Wang, X., Xu, X., and Choi, S. U. S., “Thermal Conductivity of Nanoparticle-Fluid Mixture”, Journal of Thermophysics and Heat Transfer, Vol. 13, pp. 474-180, 1999.
    Wen, D., and Ding, Y., “Formulation of Nanofluids for Natural Convective Heat Transfer Applications”, International Journal of Heat and Fluid Flow, Vol. 26, pp. 855-864, 2005.
    Xuan, Y., and Li, Q., “Heat Transfer Enhancement of Nanofluids”, Int. J. Heat and Fluid Flow, Vol. 21, pp. 58-64, 2000.
    Xuan, Y., and Li, Q., “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, ASME J. Heat Transfer, Vol. 125, pp. 151-155, 2003.
    Xuan, Y., Li, Q., and Hu, W., “Aggregation Structure and Thermal Conductivity of Nanofluids”, AIChE Journal, Vol. 49, No. 4, pp.1038-1043, 2003.
    何泰安, “矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究”, 國立成功大學機械工程研究所碩士論文, 1999.
    林建中, “矩形容器內奈米流體之自然對流熱傳現象之研究”, 國立成功大學機械工程研究所碩士論文, 2004.
    張裕昇, “方形容器內奈米流體之自然對流熱傳現象之實驗研究”, 國立成功大學機械工程研究所碩士論文, 2006.
    夏志豪, “矩形容器內含懸浮相變化微粒之自然對流熱傳之數值模擬”, 國立成功大學機械工程研究所碩士論文, 2000.

    下載圖示 校內:立即公開
    校外:2007-08-13公開
    QR CODE