| 研究生: |
王耀庭 Wang, Yaw-Tyng |
|---|---|
| 論文名稱: |
連鑄鋼胚冷卻用氣助式扇形噴嘴霧化特性之實驗研究 Experimental Studies on The Characteristics of Air-Assisted Atomizer for Spray Cooling of Continuous Casting on Blooms |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 鋼胚冷卻 、氣助式 、噴嘴 、噴霧特性 |
| 外文關鍵詞: | mass flow rate, Spray Cooling, Air-Assisted, SMD, spray angle, Continuous Casting |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
一貫作業煉鋼廠長久以來均以內、外優質鋼胚為追求目標,尤其在連續鑄造(continuous casting)階段,適當均勻噴霧冷卻為鑄胚品質良窳之關鍵。「噴霧冷卻」是藉由流體霧化機構,將冷卻液(水)利用流體間能量傳遞,使其破裂(Breakup)為細微顆粒液滴(Droplet);並與高溫鑄胚充分接觸,產生最大的面積接觸效率,將鑄胚熱量帶走達到有效冷卻作用。如何選用一良好霧化噴嘴(具拔熱效率與均勻冷卻之能力)成為相當重要的課題。
本研究將探討氣助式扇形噴嘴之霧化特性,分成巨觀和微觀特性說明:巨觀方面有流量(Flow rate)性能曲線,噴霧型態(Spray Pattern),空間流量分佈(Space Distribution),噴霧錐角(Spray Angle);微觀方面,以雷射粒徑繞射分析儀(INSITEC)量測,得平均粒徑(SMD),粒徑分佈(Drop Size Distribution)…等參考條件。噴嘴霧化特性,將藉由實驗操作來探討氣助式噴嘴之基本噴霧特性,並依據所得,建立氣助式噴嘴噴霧特性之資料庫,供為後者在噴嘴選用、噴嘴設計時之參考。
實驗後得知,「氣水比」將是影響氣助式噴嘴霧化品質之重要因素;流量方面,液體流量隨氣水比比值增加而減少;當液體壓力固定,液體流量隨著空氣流量增加而降低。空間流量分佈方面,氣水比固定,流場噴霧中心空間流量分佈之液體流量隨空氣流量增加而得到提升;固定空氣流量,氣水比比值增大使中心部份流量降低,中心以外空間流量分佈隨著空氣流量增加及氣水比降低而增大。噴霧錐角隨空氣壓力增加而略增,並隨氣水比增加而略減現象。在微觀噴霧特性:氣水比低時,粒徑大小分佈差距範圍較大;氣水比高(Air/Water ratio=40)整體粒徑大小分佈相當均勻,液滴之平均粒徑降低約100μm,所以高氣水比條件,噴嘴之霧化特性效果佳。另一方面,平均粒徑大小隨著空氣壓力增加而SMD遞減;相同空氣壓力,SMD隨著氣水比增加而變小;相同空氣流量,霧化的SMD隨氣水比增加而變小且霧化更細。綜合三款氣助式噴嘴之霧化特性,當氣水比維持在15 ~ 40,空氣流量在60 LPM以上之操作條件,可獲得液滴在空間上流量分佈均勻性好及分佈範圍廣、粒徑大小分佈均勻性一致、平均粒徑尺寸大小差距小之噴嘴最佳霧化特性的條件。
ABSTRACT
The purpose of this paper is to investigate the atomizing characteristics of air-assisted atomizer on the blooms of secondary cooling process in a continuous casting machine.
The characteristics of air-assisted spray are described on the macroscopic properties— pressure & mass flow rate performance curve, spray pattern, and spray angle; the microscopic properties — SMD, particle size distribution, and to compare atomization in air-assisted atomizer. The objective is to analyze the characteristic of spray of air-assisted atomizer by experiment and set up a data-base of air-assisted atomizer. According to experimental results, on the macroscopic properties:the flow rate of liquid decreases with airflow rate increases, the spray angle increases with air pressure and water pressure increases; On the microscopic properties :SMD of spray liquid decreases with Air /Water ratio, and also SMD of spray decreases from center and then increase from up-stream to down-steam.
At Air/Water ratio = 40,the SMD in the center region of spray is larger than these in the peripheral of spray,However,at Air/Water ratio = 20,the tendency of SMD changes in the spray is opposite.
參 考 文 獻
1. 金重勳, “熱處理,” chap.5 復文書局 1995
2. Mizikar, E. A., “Spray Cooling Investigation for continuous Casting of Billets and Blooms, ” Iron and Steel Engineer, June 1970.
3. Lefebvre, A. H., “Gas Turbine Combustion,” McGraw-Hill, 1983.
4. NACA report 1300, chap. 1.
5. Lane, W.R. Shatter of Drops in Steams of Air, Ind. Eng Chem., Vol. 43, No. 6, 1951, pp 1312-1317.
6. Castlemen, R. A., Jr., “ The Mechanism of the Atomization of Liquids, ”Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1954.
7. Dombrowski, N. and Fraser, R. P. Trans. R. Soc. Londom. Ser. A, 247, 101, 1954.
8. Hagerty, W. and Shea, “A Study of the Stability of Plane Fluid Sheets,” J. F. J. App1. Mech. 22, 509, 1955.
9. Mansour, Adel and Chigier, Norman “Disintegration of Liquid Sheets,” Phys. Fluids. , A2, pp. 706-719, 1990.
10. Stapper, B. E. and Samuelsen, G. S. “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two Dimensional Liquid Sheet,” J. Eng. For Turbine and Power, Vol. 114, pp. 39-45, 1992.
11. 許耀仁, “氣衝式平面噴嘴液膜霧化特行之研究,”國立成功大學碩士論文,1993.
12. Rizkalla, A. A. and Lefebvre, A. H. “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics, ” J. Eng. Power, pp. 173-179, April 1975.
13. Rizkalla, A. A. and Lefebvre, A. H. The Influence of Air and Liquid Properties on Airblast Atomizer, J. Fluids Eng., vol. 97, pp. 316-320, 1975.
14. Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp. 1139-1142, 1983.
15. Beck, J., Lefebvre, A. H., and Koblish, T., “Air-Blast Atomization at Conditions of Low Air Velocity, ” Paper No, AIAA, 89-0217,1989.
16. Beck, J. E., Lefebvre, A. H., and Koblish, T. R. “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol. 1, No. 2,pp. 155-170, 1991.
17. Beck, J. E. and Lefebvre, A. H., “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol. 7, NO. 2, March-April 1991.
18. Aligner, M., and Witting, S., “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp. 706-710, 1980.
19. Sattelmayer, T., and Witting, S., “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 465-472, 1986.
20. Rizk, N. K., and Lefebvre, A. H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transition of The ASME Vol. 106, July 1984.
21. Whitlow, J. D., and Lefebvre, A. H., “Effervescent Atomizer Operation and Spray Characteristics” Vol. 3, pp. 137-155, 1993.
22. Press, C., Gupta, A. K., and Semerjian, H. G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD-Vol. 104, pp. 111-119, 1988.
23. Kevin, S. Chen, and Lefebvre, A. H., “Discharge Coefficients for Plain-Orifice Effervescent Atomizer,” Atomization and Sprays, Vol. 4, pp. 275-290, 1994.
24. Buckner, Harry N., and Sojka, Paul E., “Effervescent Atomization of High –Viscosity Fluids: Part Tow. Non-Newtonian Liquids, ” Atomization and Sprays, Vol. 3, pp. 157-170, 1993.
25. Kevin, S. Chen, and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers,” Atomization and Sprays, Vol. 4, pp. 291-301, 1994.
26. Byung Sun Park and Sang Yong Lee, “An Experimental Investigation of The Flash Atomization Mechanism,” Atomization and Sprays, Vol. 4, pp. 159-179, 1994.
27. Sakai, T., Kito, M., and Saito, M., “Characteristics of Internal Mixing Twin-Fluid Atomizers,” Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 235-241
28. 蔡清洲, “ 漩渦噴流中氣液兩相交互作用之實驗分析,”國立成功大學碩士論文,1989.
29. 洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
30. 楊坤和, “研究型氣助式噴嘴之噴霧特性研究,” 國立成功大學碩士論文,1992.
31. 徐明生, “ 雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文,1995.
32. W.H. Lai, K.H. Yang, C.H. Hong, M.R. Wang, “Three Dimensional Measurements in an Air-Assist Research Simplex Atomizer by PDPA,” Atomization and Sprays, 1994.
33. C. K. Chiang, J. Y. Poo, and T. H. Lin, “Number of result Drops In Binary Liquid Drop Collision,” Picast, Conference roceedings Vol. tow, pp. 577-589, 1994.
34. McTaggart, J. D., and List, R. , “Collision and Breakup of Water Drops at Terminal Velocity,” J. of the Atomspheric Sciences, co1. 32, pp. 1401-1411.
35. Adam, J. R., Lindblad, N. R. and Hendricks, C. D. “The Collision, Coalescence, and Disruption of Water Droplets,” J. App1. Phys., Vol. 39, pp. 5173-5180, 1968.
36. Podvysotsky, A. M. and Shraiber, A. A., “Coalescence and Breakup of Drops in Two-Phase Flows,” Int. J. Multiphase Flow, Vol. 10, No. 2, pp. 195-209, 1984.
37. Ashgrize, N. and Grivi, P., “Coalescence Collision of Fuel Droplets,”AIAA-87-0135.
38. Nguyen, Q. – V., Rangle, R. H. and Dunn-Rankin, D., “Measurement and Prediction of Trajectories and Collision of Droplets,” Int. J. Multiphase Flow, Vol. 10, No. 2, pp. 159-177,1991.
39. Frederick C. HAAS, “Stability of Droplets Suddenly Exposed to a High Velocity Gas Stream,” A. I. Ch. E. Journal Page, 920, November, 1964.
40. Dorman, R. G. “The Atomization of Liquid in a Flat Spray,” British J. App1. Phys., Vol. 3, pp. 189-192, 1952.
41. Fraser, R. P., Eisenklam, P., Dombrowski, N. and Hasson, D. “Drop Formation from Rapidly Moving Sheets,” A. I. Ch. E. J., Vol. 8, No. 5, pp. 672-680,1962.
42. Dombrowski, N. and John, W. R. “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.