簡易檢索 / 詳目顯示

研究生: 沈立忠
Shen, Lie-chung
論文名稱: GPS反射訊號處理技術及應用之研究
Research on GPS Reflected Signal Processing Technique and Applications
指導教授: 蔡金郎
Tsai, Ching-Lang
曾清涼
Tseng, Ching-Liang
學位類別: 博士
Doctor
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 190
中文關鍵詞: 地物識別土壤含水率水位高度反射能力GPS反射訊號GPS定位都卜勒頻率位移量水流速度
外文關鍵詞: Doppler Shifts, Stream Flow, GPS Position, GPS Reflected Signals, Reflectivity, Object Detection, Water Level, Soil Moisture
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要說明GPS反射訊號處理與地表高度整合應用GPS接收儀之設計與研發。在設計構想上,同時應用右弦圓柱型極化及左弦圓柱型極化天線分別接收GPS直接訊號及反射訊號,且進行反射能力分析及地表地物識別、土壤含水率、都卜勒位移測算水面流速應用研究 ;此特別之天線整合裝置設計,在無須提升天線接收靈敏度條件下,使左旋天線接受之頻寬、極化圓柱型頻束角度變大。依此方法應用地球幾何座標,各衛星與接收儀所在位置形成視距線上,接收多組GPS反射訊號推算出實際地面或水面反射點位置與高度。
    本研究以近似單點定位解方式,使用衛星星曆程式初算衛星位置與衛星時間延遲量。並以整數未知數法則,應用GPS L1與L2相位觀測量之周波未定數項求解。再以雙頻相位觀測量推導大氣電離層修正量與對流層修正估測數模式,自動迭代即時大氣層再修正量後,精確收斂正、反接收儀座標解。在研究分析過程,為快速精確收斂算出所接收各組反射訊號之實際地面或水面反射點位置與高度,考量反射面粗糙度、反射角偏移、地表特徵影響。並結合數位地形高程資料庫,整合衛星影像圖之應用。可有效監控來自海面、陸地及河床表面實驗之多組反射點不同高程值,座標位置精確收斂至2公分至 10公分合理誤差。其中高程誤差來源主要為受到反射面粗糙度、反射角偏移影響達到5公分至30公分高程誤差。
    本研究最重要之成果在於應用GPS反射訊號之相位觀測量,並透過偵獲反射訊號過程,以比對每一組GPS衛星直接訊號與反射訊號之相位觀測量,並計算出GPS反射訊號隨衛星所經過之地表之反射能力及對地表之特徵進行地物識別,例如:溪流緩流、溪流勁流、乾土壤、濕土壤、草地、林地、稞露表土及水泥道路等,特別在乾、濕土壤之含水率識別度,可分析出土壤表層之體積比例飽和含水率,同時應用戶外實驗室執行反射能力與土壤之粒徑成分實驗,建立GPS反射能力、土壤含水率、介電係數關係公式。本研究於實驗研究海面與溪流之水流觀測,使用地球自轉角動量修正模式,結合都卜勒頻率位移量之最小平方追尋法在ENU座標體系,測算水流速度,可計算如溪流洪水範圍達5公分/秒至 265公分/秒,精度達0.5公分/秒。

    In the paper, Application and development of a highly integrated GPS receiver with reflected GPS signals for ground object detection, soil moisture, and stream flow will be described. Several application considerations have been analyzed in order to successfully acquire and track weak, reflected GPS signals from ground surface. First of all, both RHCP and LHCP antennas are employed so that direct and reflected signals can be acquired simultaneously. The direction of arrival of the signals may be along the reflected signal path or even along the line-of-sight of a particular satellite.
    GPS Almanac data provided the initial satellite positions, clock error delay and atmospheric delay parameters. An integer ambiguity resolution algorithm has also been implemented. The precise point positions for RHCP and LHCP antennas are enhanced and processed by repeating instantaneous ionosphere delay correct model with deriving from L1 and L2 carrier phase and troposphere estimated parameter model. During the development and test stage, the DTED and visual elements of satellite’s images has been used and mapped with the integrated software. For sensing of ocean, landscape, and stream, due to rough surface effects and propagation angle effect on slanting surface, the accuracies of each reflected altitude are among 5 cm and 30 cm. The accuracies of each reflected area are converged among 2 cm and 10 cm.
    Unlike most existing GPS reflection experiment, the goal of the study is to exploit the carrier phase, reflectivity of L1/L2 SNR components of the reflected signals and direct signals for stream clam water, disturbed water, dry soil, wet soil, grass, tree, bare soil and concrete road object detection with surface. The soil moisture for surface of soil should be classified by volumetric content of saturated water for soil.
    In monitoring coastal tidal currents, water levels, and floodwater levels, the velocity vectors for flows speed of was estimated approximately among 5 cm/s and 265 cm/s by using differential carrier Doppler shifts and a coordinate rotation correction model. The accuracies of velocity were converged 0.5 cm/sec.

    摘要 I Abstract III 論文目錄 V 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 3 1.4 論文綱要 4 第二章 研究背景 7 2.1 GPS應用基礎 7 2.1.1 GPS定位原理 7 2.1.2 GPS與GPS反射訊號測量系統架構 7 2.1.3 GPS測量與GPS反射訊號測量方法 9 2.1.4 GPS測量與GPS反射訊號測量誤差 11 2.2 GPS反射訊號之反射點定位技術 13 2.2.1 GPS反射點之定位原理 13 2.2.2 應用DTED高程與GPS反射點高程推算測量方法 15 2.3 GPS反射點之瞬時位移測量與水流速度方法 17 2.4 反射能力與地物識別 21 2.5 移動性載具之GPS訊號觀測量定位方法 26 2.6 低軌道衛星之GPS訊號觀測量定位方法 28 2.7 研究區域簡介 30 2.7.1 水庫地形 30 2.7.2 溪流地形 31 2.7.3 海岸地形 34 2.7.4 陸地地形與實驗室 38 第三章 文獻回顧 41 3.1 傳統GPS測量運用於水位監測文獻回顧 41 3.2 GPS反射訊號測量運用於水位監測文獻回顧 43 3.3 雷達波反射訊號運用於土壤溼度識別文獻回顧 50 3.4 GPS反射訊號運用於遙測地表地物識別文獻回顧 53 3.5 GPS反射訊號運用於遙測海流速度文獻回顧 57 3.6 小結 60 第四章 研究方法 61 4.1 研究方法與模式 61 4.1.1 反射訊號、直接訊號觀測量整合應用技術 61 4.1.2 地表GPS反射點座標計算方法 64 4.1.3 溪流GPS反射點水流計算方法 66 4.1.4 地表GPS反射點地物識別、土壤含水率計算方法 74 4.1.5 反射能力與土壤含水率 75 4.1.6 反射能力與地表粗糙度計算方法 76 4.2 座標定位校正 80 4.2.1 電離層、對流層等自然干擾源之座標修正 80 4.2.2 水位高程校正 90 4.2.3 數位高程資料庫校正 92 4.2.4 數位衛星影像圖整合反射點座標修正 93 4.3 小結 93 第五章 實驗儀器與實驗流程 96 5.1 實驗儀器介紹 96 5.1.1 L1/L2頻段左弦天線(反射訊號接收天線) 97 5.1.2 L1/L2雙頻GPS接收儀 101 5.1.3 實驗儀器配置 103 5.2 反射訊號實驗流程 106 5.2.1 實驗操作說明 106 5.2.2 地表實驗 111 5.2.3 水面實驗 114 第六章 地表與土壤含水率之數據分析與實驗結果 117 6.1 地表實驗結果分析 117 6.1.1 反射訊號觀測量數據分析 117 6.1.2 反射點座標定位精度 127 6.1.3 小結 131 6.2 土壤含水率實驗結果分析 132 6.2.1 反射訊號觀測量數據分析 132 6.2.2 土壤溼度數據與粒徑分析 134 6.2.3 反射點土壤溼度與反射強度分析 136 6.2.4 小結 142 第七章 溪流、水庫與海面之數據分析與實驗結果 143 7.1 溪流流向、水位、流量實驗結果分析 143 7.1.1 反射訊號觀測量數據分析 143 7.1.2 溪流水位與水流數據分析 147 7.1.3 溪流流量與數位地形高程數據分析 155 7.1.4 小 結 156 7.2 潮汐、波浪高度實驗結果分析 157 7.2.1 反射訊號觀測量數據分析 157 7.2.2 潮汐與海浪波形變化之數據分析 161 7.2.3 海岸線與數位地形高程數據分析 167 7.2.4 小結 170 7.3 水庫水位實驗結果分析 171 7.3.1 反射訊號觀測量數據分析 171 7.3.2 水庫水位數據分析 172 7.3.3 水庫蓄水量與數位地形高程數據分析 173 7.3.3 小結 173 第八章 結論與建議 174 8.1 實驗結論 174 8.1.1 反射訊號應用領域與成效 174 8.1.2 整合運用技術與軟硬體發展之侷限 175 8.2 研究建議 175 8.2.1 地面遙測科技方面 175 8.2.2 航空科技方面 176 8.2.3 太空與衛星遙測方面;地表水體與陸地即時監控 177 參考文獻(Reference) 180 Appendix 附錄一、 發表 之期刊論文與研討會論文 183 Appendix 附錄二、三維水流速度模式與推導公式與ENU與 185 ECEF座標轉換係數COS函數表 Appendix附錄三、水利局曾文水庫即時水位與有效蓄水量 186 公式推導,水利管理局長時間監控蘭陽溪蘭陽橋水位計高度 與GPS反射訊號結果比較,Dr Georg GPS反射點相位觀測量 展開式 Appendix附錄四、2003~2008年實驗歷程說明 188

    [1] D. Manandhar, R. Shibasaki, H.Torioto “ Prototype Software-based receiver for Remote Sensing Using Reflected GPS Signals “ ION Proceedings, GNSS 2005 .
    [2] P. J. Weiss, P. Axelrad, S. Anderson “ Assesment of Digital Terrain Models for Multipath Prediction at Geodetic GNSS Installations”, ION proceeding, GNSS 2006
    [3] S. G Michael., T. A. Scott and J. K.Stephen “Terrain Moisture Classification Using GPS Surface-Reflected Signals” , IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1 January 2007.
    [4] K.Yutaka, S. Kamal, P. Leland, M.C. Dobson “ An Evaluation of JPL TOPSAR for Extracting Tree Heights “ IEEE Transactions on Geoscience and Remote Sensing, Vol. 38. No. 6. November 2000.
    [5] F.T. Ulaby, R.K. Moore, A. K. Fung, Microwave Remote Sensing, Active and Passive, vol. 1. Norwood, MA: Artech House, 1987
    [6] C Zuffada., V. Zavorotny ” GPS reflections for Oceanography, ice and surface hydrology”, UCAR Summer COSMIC colloquium, Boulder, CO on Jun. 29, 2004.
    [7]. B.W Parkinson ” Introduction and Heritage of Navstar”, Global positioning System; Theory and Applications, Volume I. Progress in Astronautics and Aeronautics. Volume. 163. AIAA. Page 18. chapter1.
    [8] G. H. Dana,”Using a sky projection to Evaluate Pseudorange Multipath and to Improve the differential Pseudorange Position”, ION NTM, Long Beach, CA., January 2001
    [9] J. Wickert,” Science results from CHAMP”, Taipei Summer COSMIC colloquium, Taipei, Taiwan, May 2005.
    [10] J. J. SPILKER “GPS Signal Structure and Performance Characteristics “, Global Position System, Vol. I. Pp29-54
    [11]Rocken, “COSMIC Program”, UCAR Summer COSMIC colloquium, Boulder, CO, Jun. 2004.
    [12] P.J.G.Teunissen, P. J. De Jonge, and C.C.J.M Tiberius. “The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans”, Journal of Geodesy, Vol. 71, No. 10, pp. 589-602., 1997
    [13] P.J.G Teunissen,. P.J. De Jonge, and C.C.J.M. Tiberius “A new way to fix carrier-phase ambiguities” GPS World, Vol. 6, No. 4, pp. 58-61., 1995
    [14] C. C. Goad and K. Borre “RECPOS Least-squares searching for receiver position for MATLAB”. MATLAB software supply. April1996.
    [15] J. Peter “Integer ambiguity estimation using LAMBDA (basic version) for MATLAB” MATLAB software supply. Mathematical Geodesy and Positioning Delft University of Technology.May 1999.
    [16] T. L. Stephen, C. Zuffada, Y. Chao, P. Kroger and L. E. Young “ 5-cm-Precision aircraft ocean altimetry using GPS reflections” Geophsical Resarch Letters, Vol.29, No. 10, 10.1029/ 2002GL 014759, 2002
    [17] H.Y.Chen, C. Rizos and S. Han “An instantaneous Ambiguity resolution procedure suitable for medium-scale GPS reference station”, Institute of Earth Sciences, Academia , Sinica, Taipei, Taiwan, 2004
    [18] I. Kashani, P. Wielgosz, G. B. Dorota “ The Double Difference Effect of Ionospheric Correction Latency on Instantaneous Ambiguity Resolution in Long-Range RTK” ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, Sept. 2004,
    [19] E. Vinande, D. Akos, , S. Esterhnizen, D. Masters, “The Use of GPS Bi-static Radar Techniques with a Software GPS Receiver for Terrain Elevation Measurements and Ground Object Detection”; University of colorado, Boulder 61 st Annual Meeting, June, 2005.
    [20] A.Komjathy, M. Armatys, D. Masters, P. Axelrad, V.U. Zavorotny and S. J. Katzberg,”Retrieval of Ocean Surface Wind Speed and Wind Direction Using Reflected GPS Signals” Journal of Atmospheric and Oceanic Technology, Vol. 21, pp.515-526. March 2004
    [21] S. T.Lowe, Zuffada C., Chao Y., Kroger P., LaBrecque J.L., Young L.E., “Five- cm – Precise ion Aircraft Ocean Altimetry Using GPS Reflections,” Geophys. Res. Let. Vol. 29, No. 10, May 2002.
    [22] M Martin-Neira., M Caparrini., J Font-Rossello., S. Lannelongue, and C Serra Vallimitjana., “The PARIS Concept: An Experimental Demonstration of Sea Surface Altimetry Using GPS Reflected Signals,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 1, Jan. 2001.
    [23] G.A Hajj., C.Zuffada,”Theoretical Description of a Bistatic System for Ocean Altimetry Using the GPS Signal,” Radio Science, Vol. 38, No 5, Oct. 2003.
    [24] V.U.Zavorotny, and A.G.Voronovich, “Scattering of GPS signals from the ocean with wind remote sensing application,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, pp.951-964, March 2000.
    [25] G. Beyerle, K. Hocke, J. Wickert, T. Schmidt and C. Reigber “ AGPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections“ Journal of Geophsical Research, Vol. 107, No. D24, 4802, doi:10.1029/200 JD001402, 2002
    [26] B. Jitendar “ Microwave Dielectric Behavior of Wet Soil “ ISBN 1-4020-3271-4 (HB) published by Springer, copyright with Anamaya, New Delhi, India, 2005
    [27] R.J. Milliken, C.J. Zoller “ Principle of Operation of NAVSTAR and System Characteristics “ published by ION Red Books Navigation Volume I Global Positioning System p 3.- p 14.
    [28] S. G. Mohinder, R W. Lawrence., P. A. Andrews “ Global Positioning Systems, Inertial Navigation, and Integration “ ICBN 0-471-20071-9 published by John Wiley & Sons, Inc.
    [29] A. V. Leeuwen, E. Rosen, L. Carrier “ The Global Positioning System and Its Application in Spacecraft Navigation “ published by ION Red Books Navigation Volume I Global Positioning System p 204.- p 221.
    [30] NovAtel Inc , OEM 4 Family of Receiver “User Manual Volume 2 Command and Log Reference “ OM-20000047, Canada. p 142-p 144 and p 257-p 260 revision 13, 2004,
    [31] E. Tanos , R. Donald, Thompson , L. Linstrom “ Delay-Doppler Analysis of Bistatically Reflected Signals From the Ocean Surface: Thory and Application “ IEEE Transactions of Geoscience and Remote Sensing, Vol 40 , No 3, March, 2002.
    [32] G.Beyerle, K. Hocke, J. Wickert, T. Schmidt, C. Marquardt, C. Reigber “GPS radio occultations with CHAMP:A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections “ Journal of Geophsical Research, Vol. 107, No. D24, 4802, 2002
    [33] A. Helm ,G. Beyerle ,Ch. Reigber , M. Rothacher “Coastal altimetry at the Baltic Sea off-shore Rugen using L1carrier phase-delay observations of reflected GPS signals at low elevation angles”, ION , Fort Worth, USA , 2006
    [34] N. C.Oleguer, C. G. Estel, S. C. Josep, R. Antonio “ A GPS-Reflections Receiver That Computes Doppler/Delay Maps in Real Time” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No.1 , Jan. 2007
    [35] C. C. Schmullius and D. L. Evans , “ Synthetic aperture radar frequency and polarization requirements for applications in ecology, geology, hydrology and oceanography : a tabular status quo after SIR-C/X-SAR “ international Jounal of Remote Sensing 1997
    [36] A. K. Fung and F. T. Ulaby “ Matter-energy interaction in microwave region” Manual of Remote Sensing 2nd Edition , D.S. Simonet and F. T. Ulaby, Eds., American Society for photogrammetry, Betheda, Maryland, Ch 4 p115-164, 1983.
    [37] A. Helm , U. Wetzel, W. Michajljow, G. Beyerle, Ch. Reigber and M. Rothacher “Natural hazard monitoring with L1 carrier phase-delay observations of reflected GPS signals: The 2005 dam failure event of Merzbacher glacier lake” ION GNSS 2006
    [38] B. R.Maria, M. N. Manuel, “Coherent GPS Reflections From the Sea Surface “IEEE Transactions on Geoscience and Remote Sensing Letter Vol. 3, No.1 , January, 2006
    [39] J. R. Wang and B. J. Choudhury, “Passive microwave radiation from soil: Examples of emission model and observations, ”in Passive Microwave Re-mote Sensing of Land–Atmosphere Interactions. Zeist, The Netherlands: VSP, 1995.
    [40] N. Claudia, A. Mariella, and P. Francesco “Soil Moisture Retrieval From Remotely Sensed Data: Neural Network Approach Versus Bayesian Method”, IEEE Transactions on Geoscience and Remote Sensing, Vol.46, No.2, pp. 547–557 2008
    [42] Z. Y. Chang, P. Blagoy, J. Frank, C. Gerard, “Extending the limits of a capacitive soil-water-content measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 6, ,2240-2244, December, 2007.
    [43] S. Mohinder, R. P. Lawrence, “ Global Positioning Systems, Inertial Navigation, and Integration” A John Wiley & Sons, Publication, ISBN 0-471-20071-9, pp 61-369. Angust 2001
    [44]郭華東,2000, 雷達對地觀測理論與應用,科學出版社, ISBN 7-03-009200-7 pp 238-247

    下載圖示 校內:2010-02-09公開
    校外:2011-02-09公開
    QR CODE