簡易檢索 / 詳目顯示

研究生: 陳建合
Chen, Chien-Ho
論文名稱: 陸基增強系統測試平台使用者接收機雛形之研究
Development of Ground Based Augmentation System Test-bed User Receiver Prototype
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 全球定位系统陸基增強系統現場可程式邏輯門陣列
外文關鍵詞: GPS, GBAS, FPGA
相關次數: 點閱:42下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陸基增強系統(Ground Based Augmentation System, GBAS)能幫助飛具使用GPS(Global Positioning System)進行精確進場(precision approach, PA)與降落的系統,而IMT(Integrity Monitoring Test-bed)計畫的目的就是為了於台北飛航情報區(Taipei Flight Information Region, Taipei FIR)內建置陸基增強系統地面設施原型機,IMT計畫主要又分為兩個部份,第一個目的是評估IMT主控站演算法對導航效能的影響,第二個目的是驗證IMT使用者演算法對導航效能的影響,其中第二個目的主要工作包括了發展GBAS使用者接收機平台。本論文分別提出以軟體無線電(Software Defined Radio, SDR)與FPGA(field-programmable gate array)技術實現GBAS使用者接收機平台,其主要與一般的硬體接收機之不同,GBAS使用者接收機平台可以根據需求修改其基頻處理器與通用處理器,另外由於GBAS使用者接收機平台需要處理GPS訊號與IMT服務訊息,所以本文也將介紹GPS的基頻處理器與通用處理器的原理,當中包括處理器的硬體架構與軟體流程,除此之外,GBAS使用者演算法實現在GBAS使用者接收機平台的過程將會呈現,要注意到GBAS使用者是根據RTCA DO-253C發展而成,而在本文會介紹差分修正量應用流程、接收機位置計算流程與保護極限計算流程。目前GBAS使用者接收機平台已經可以成功地應用IMT服務訊息計算出接收機位置與保護極限(Protection Level, PL)。事實上IMT是以支援第一類精確進場而發展,所以GBAS接收機測試平台在應用IMT服務訊息後是以第一類精確進場的需求為驗證標準。為了驗證GBAS接收機雛型的效能,一些場地測試分別在高雄國際機場與屏東賽嘉飛行場舉行,在高雄國際機場的實驗中,GBAS接收機測試平台以靜態的方式測試並驗證導航效能,在屏東賽嘉飛行場的實驗中,GBAS接收機測試平台則是安裝在輕航機上以動態的方式驗證結果。

    Aircrafts can conduct the GPS-based precision approach (PA) and landing by Ground Based Augmentation System (GBAS). IMT (Integrity Monitoring Test-bed) is aimed to establish GBAS ground facility prototype in Taipei Flight Information Region (FIR). The IMT project is divided into two parts. The first part is to assess the effects on navigation performance due to various parameter changes in the algorithms of GBAS master station, and the second part is to evaluate the impacts on navigation performance from the changes in the GBAS user algorithm. This involved developing a GBAS test-bed user receiver prototype. The Software Defined Radio (SDR) and field-programmable gate array (FPGA) technology are used to implement a GBAS receiver prototype. Unlike a conventional hardware-based receiver, the GBAS receiver prototype allows us to modify the baseband processor and general purpose processor. In addition, because the GBAS receiver prototype needs to process the GPS signal and IMT messages, the theory of the baseband processor and general purpose processor are briefly introduced. Also, this work shows the hardware architecture of the baseband processor and the flowchart of the general purpose processing. The implementation of GBAS user algorithm on the GBAS receiver prototype is presented as well. Of note, the GBAS user algorithm is based on RTCA-DO253C ,and the GBAS user algorithm includes application of differential corrections, the calculation of position solutions, and the computation of protection level (PL). Current GBAS receiver prototype can apply the IMT correction messages and output differential position solution and PL. After applying the IMT correction messages, the performance of GBAS receiver prototype is aimed to meet the requirement of CAT I. In order to evaluate the performance of GBAS receiver prototype, several field tests were conducted at Kaohsiung International Airport (ICAO code: RCKH) and Sijjia air field. In RCKH experiment, the performance of GBAS receiver prototype was tuned and verified as a static user. In Sijjia air field experiment, the GBAS receiver prototype was deployed on the ultralight vehicle as a dynamic user.

    摘要 I ABSTRACT III 誌謝 V 第1章 緒論 1 1.1 GPS簡介 2 1.2 陸基增強系統(GBAS)簡介 3 1.3 完整性監控測試平台(IMT)簡介 5 1.4 研究動機與目標 5 1.5 文獻回顧 6 1.6 使用者接收機雛形平台簡介 6 1.7 論文架構 9 第二章 GPS基頻訊號處理與導航資料解碼 10 2.1 GPS訊號結構 10 2.2 GPS基頻訊號處理流程 11 2.3 GPS訊號擷取原理 13 2.4 GPS訊號追蹤原理 15 2.4.1 載波追蹤迴路 15 2.4.2 電碼追蹤迴路 18 2.4.3 完整追蹤迴路 22 2.5 GPS導航資料解碼 22 2.6 虛擬距離估算方法 27 2.7 總結 28 第三章 IMT訊息處理 29 3.1 IMT發展現況 29 3.2 IMT使用者設備功能 30 3.3 IMT訊息格式 31 3.4 IMT使用者演算法 36 3.4.1 差分修正量應用流程 38 3.4.2 接收機位置計算流程 39 3.4.3 保護極限計算流程 42 3.5 總結 44 第四章 GBAS接收機雛形之實現 45 4.1 SDR實現GBAS接收機雛形 45 4.2 FPGA板實現GBAS接收機雛形 49 4.2.1 基頻處理器硬體架構 51 4.2.2 通用處理器軟體流程 52 4.3 總結 54 第五章 GBAS接收機雛形之測試與分析 57 5.1 SDR實現之GBAS接收機雛形測試 57 5.1.1 高雄國際機場場地測試 57 5.1.2 屏東賽嘉飛行場場地測試 66 5.2 FPGA板實現GBAS接收機雛形測試 73 5.3 總結 78 第六章 結論與未來工作 79 6.1 結論 79 6.2 未來工作 80 參考文獻 81 AUTOBIOGRAPHY 84

    [1]. Enge, P., "Local area augmentation of GPS for the precision approach of aircraft," In Proceedings of the IEEE , vol.87, no.1, pp.111-132.
    [2]. Murphy, T.; Imrich, T., "Implementation and Operational Use of Ground-Based Augmentation Systems (GBASs)—A Component of the Future Air Traffic Management System," Proceedings of the IEEE , vol.96, no.12, pp.1936-1957, Dec. 2008.
    [3]. Hsu H.C., Implementation of a Local Area Integrity Monitoring for GPS, Department of Aeronautics and Astronautics, National Cheng Kung University, 2011.
    [4]. Enge P. and Misra P., Global Positionning System: Signals, Measurements, and Performance: Ganga-Jamuna Press, 2001.
    [5]. Parkinson B.W., Spilker Jr. J.J., Global Positioning System: Theory and Applications, Volume I: AIAA Publication, 1996.
    [6]. Braasch M.S.; Van Dierendonck A.J., “GPS Receiver Architectures and Measurements,” In Proceedings of the IEEE, VOL. 87, NO. 1, JANUARY 1999.
    [7]. FAA, http://www.faa.gov/
    [8]. RTCA DO-246B, “GNSS-Based Precision Approach Local Area Augmentation System (LAAS) Signal-In-Space Interface Control Document (ICD)”
    [9]. Yeh, S.J., Jan, S.S., “Assessment of Integrity Monitoring Test-bed Module for the Airport Environment,” In Proceedings of 2012 IEEE/ION PLANS, Myrtle Beach, SC, April 2012.
    [10]. Chen Y-S, Application of Software Radio in GPS Signal Tracking, Department of Electrical Engineering, National Cheng Kung University, 2001.
    [11]. Sun C.C., Developing of GNSS Software Defined Receiver TestBed: Single Frequency Approach, Department of Aeronautics and Astronautics, National Cheng Kung University, 2007.
    [12]. Coelho, F. J., Software Defined GPS/Galileo Receiver, Department of Electrical Engineering, Technical University of Lisbon, 2011.
    [13]. Mumford, P.J., Parkinson, K., ”The Namuru research receiver a year in review,” In IGNSS Symposium 2009, Holiday Inn Surfers Paradise, Qld, Australia , December 2009.
    [14]. Wu C.H., Implementation of a Galileo/GPS Receiver on an FPGA board, Department of Electrical Engineering, National Cheng Kung University, 2008.
    [15]. Kao T.L., Studies on Unambiguous Tracking of GNSS BOC(1,1) Signals, Department of Electrical Engineering, National Cheng Kung University, 2011.
    [16]. Mumford, P.J., Parkinson, K., Dempster, A.G., “The Namuru Open GNSS Research Receiver,” In proceedings of 19th Int. Tech. Meeting of the Satellite Division of the U.S, 2005.
    [17]. Tsui, J. B. Y., Fundamentals of Global Positioning System Receivers: A Software Approach, 2nd edition, John Wiley & Sons, Inc, 2005.
    [18]. Kaplan E.D., Understanding GPS: Principles and Application, Artech House Publishers, Boston, MA, 1996.
    [19]. IS-GPS-200E Global Positioning System Wing (GPSW) Systems Engineering & Integration Interface Specification 200 Revision F, 2012.
    [20]. Dardari D., Falletti E., Luise M., Satellite and Terrestrial Radio Positioning Techniques: A Signal Processing, Elsevier Ltd., 2012.
    [21]. RTCA DO-253C, “Minimum Operational Performance Standards for GPS Local Area Augmentation System Airborne Equipment”
    [22]. RTCA DO-208, “Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using Global Positioning System(GPS)”
    [23]. Walter T., Enge P., "Weighted RAIM for Precision Approach," Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation, Palm Springs, CA, September 1995, pp. 1995-2004.
    [24]. McGraw, G., Murphy, T., Brenner, M., and Pullen, S., "Development of the LAAS Accuracy Models," In Proceedings of ION GPS 2000, Salt Lake City, UT, 2000.
    [25]. Van Nee, D.J.R.; Coenen, A.J.R.M.; , "New Fast GPS code-acquisition technique using FFT," Electronics Letters , vol.27, no.2, pp.158-160, 17 Jan. 1991.
    [26]. Borre, K., Akos, D.M., Bertelsen, N., Rinder, P., Jensen, S.H., Springer - A Software-Defined GPS and Galileo Receiver, Birkhauser Boston, 2007.
    [27]. Gleason S., Gebre-Egziabher D., GNSS Applications and Methods, Artech House, 2009.
    [28]. GP2015 Data Sheet , Zarlink Semiconductor.
    [29]. Heo, Y., Mumford P.J., “Open Source Software Development for UNSW FPGA-based GPS Receiver” Taste of Summer Research Scholarships, 2006.
    [30]. Greenberg, A., Open Source Software for Commercial off-the-shelf GPS Receivers, Electrical and Computer Engineering, Portland State University, 2005.
    [31]. Anthony J. M., Embedded Software Development with eCos, Pearson Education, Inc., 2003.
    [32]. Kelley C., Cheng J., Barnes J., “OpenSource GPS Open Source Software for Learning about GPS”, In proceedings of 15th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation, Portland, Oregon, September, 2002.
    [33]. GPL-GPS Source Code, http://svn.psas.pdx.edu/svn/psas/trunk/gps/gpl-gps/
    [34]. Petrovski, I., Tsujii, T., Perre, J-M., Townsend, B., Ebinuma, T., “GNSS Simulation: A User’s Guide to The Galaxy”, Inside GNSS, October 2010, pp. 36-45.
    [35]. Chen, C.H., Jan, S.S., “FPGA Implementation of a GBAS prototype receiver for Integrity Monitoring Test-bed,” In proceedings of IGNSS Symposium, Sydney, Nov. 2011.
    [36]. Chen, C.H., Jan, S.S., “A GBAS Receiver Prototype based on FPGA for Integrity Monitoring Test-bed”, In proceedings of ION GNSS, Nashville, TN, September, 2012.
    [37]. Rao M., Falco G., “Code Tracking and Pseudoranges”, Inside GNSS, February 2012.

    無法下載圖示 校內:2018-03-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE