| 研究生: |
張維綸 Chang, Wei-Lun |
|---|---|
| 論文名稱: |
反算法於封裝晶片熱源預測及散熱模組最佳化之研究 The Inverse Problem in Estimating the Heat Source of Encapsulated Chip and Optimal Shapes for Fin Module |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 熱傳問題 、反算 、封裝晶片 、散熱模組 、熱源 、最佳化 |
| 外文關鍵詞: | heat sink, EMC, fin module, heat transfer, inverse problem, optimal design |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多工程問題上常使用傳統正算方法來求解其物理量,亦就是探討將已知條件輸入系統模式來分析其輸出為何,這就是正算問題(Direct Problem)。然而在許多實際工程問題中,存在著很多物理量因為客觀條件限制或量測技術不足而無法直接計算或量測其值。因此,為了取得所需之物理量,必須利用反算法藉由其它已知的參數或物理量反求之,這就是逆向或反算問題(Inverse Problem)。由於電子元件的熱傳問題在現今科技產業中,其所佔的重要性與日遽增,再加上目前的趨勢走向高科技、微電子產業,是故在晶片的發熱量增加且體積縮小的情形下,元件的壽命與其溫度分佈情形有極大之關連。對於電子產品而言,過高的溫度會損害到晶片的壽命,甚至造成整個系統的不穩定。
有鑑於此,本論文分為兩章節,所使用反算法和最佳化方分別為共軛梯度法和拉凡格式法,在第二章將反算法之共軛梯度法運用在預測晶片內部之熱傳問題上,使用商業軟體CFD-ACE+來建立複雜物理模型的幾何形狀與網格,期望能以數值分析的方式利用CFD-ACE+所解得上表面溫度分佈情形作為反算的依據,即可預測出內部未知熱源強度之預測出內部熱源強度。在第三章中,利用第二章之晶片上方加入散熱模組使其幫助散熱,同樣利用軟體建立幾何模型並結合最佳化方法-拉凡格式法,針對散熱模組之設計參數進行最佳化預測;本章節散熱模組散熱方式是由氣體冷卻下吹式冷卻配置的條件下,來對於尺寸參數組合進行最佳化研究。
In many practical engineering applications the direct problem is utilized to solve for its physical quantity by substituting the known parameters to the system. However in many actual problems, many physical quantities are impossible to calculate or to measure directly and the techniques for inverse problems are needed to obtain these values. Nowadays, the trend in microelectronics is toward increasing higher input/output, higher component density and higher electrical performance, which makes thermal enhancement to package performance an increasingly important issue.
The present thesis divides into two chapters; the techniques of the Conjugate Gradient Method (CGM) and Levenberg-Marquardt Method are applied, respectively. In chapter two, a three-dimensional inverse heat conduction problem is solved by using the Conjugate Gradient Method (CGM) and the general purpose commercial code CFD-ACE+ is examined to estimate the strength of the unknown heat generation for an encapsulated chip in a three-dimensional irregular domain based on the simulated measured temperature distributions on surface by the simulated infrared thermography.
In chapter three, a three-dimensional inverse design problem in estimating the design variables for heat sink modules with an encapsulated chip is solved by using the Levenberg-Marquardt Method (LMM) and the general purpose commercial code CFD-ACE+ in an irregular domain. Three different types of heat sinks are examined at a fixed fin array volume to determine the most efficient type of heat sink. Moreover, Alumina and Copper heat sinks are compared to find the optimum design of the module.
1. CFD-ACE+ user’s manual, ESI-CFD Inc. 2005.
2. C.P. Wong, and M.M. Wong, “Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics,” IEEE Trans. Components Pack. Technol. Vol 22, pp.21–25, 1999.
3. V. M. Kulkarni, and K. N. Seetharamu, and I. A. Azidl, and P. A. Aswatha Narayana, and G. A. Quadir, “Numerical simulation of underfill encapsulation process based on characteristic split method,” Int. J. Numer. Meth. Engng. Vol 66, pp.1658–1671, 2006.
4. R. Pasquetti, and C. Le Niliot, “Boundary Element Approach for Inverse Heat Conduction Problems: Application to A Bidimensional Transient Numerical Experiment,” Numerical Heat Transfer, Part B., Vol 20, pp. 169-189, 1991.
5. P. Terrola, “A Method to Determine the Thermal Conductivity from Measured Temperature Profiles,” Int. J. Heat Mass Transfer, Vol 32, pp.1425-1430, 1989.
6. C. H. Huang, and J. Y. Yan, “An Inverse Problem in Simultaneously Measuring Temperature Dependent Thermal Conductivity and Heat Capacity”, Int. J. Heat and Mass Transfer, Vol 38, pp3433-3441, 1995.
7. C. H. Huang, and S. C. Chin, “A Two-Dimensional Inverse Problem in Imaging the Thermal Conductivity of a Non-homogeneous Medium,” Int. J. Heat and Mass Transfer, Vol 43, pp.4061-4071, 2000.
8. C. H. Huang, and T. M. Ju, and A. A. Tseng, “The Estimation of Surface Thermal Behavior of Working Roll in Hot Rolling Process,” Int. J. Heat and Mass Transfer, Vol 38, pp.1019-1031, 1995.
9. CFX-4.4 User's Manual, AEA Technology Plc, Oxfordshire, U.K., 2001.
10.C.H. Huang, and S.P. Wang, “A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method,” Int. J. Heat and Mass Transfer, Vol 42, pp.3387-3403, 1999.
11.C.H. Huang, and W.C. Chen, “A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method,” Int. J. Heat and Mass Transfer, Vol 43, pp.3171-3181, 2000.
12. C. H. Huang, and L. C. Jan, and R. Li, A. J. Shih, “A Three-Dimensional Inverse Problem in Estimating the Applied Heat Flux of a Titanium Drilling,” Theoretical and Experimental Studies, Int. J. Heat and Mass Transfer, Vol 50, pp.3265-3277, 2007.
13. C. H. Huang, and H. C. Lo, “A Three-Dimensional Inverse Problem in Predicting the Heat Fluxes Distribution in the Cutting Tools”, Numerical Heat Transfer, part A-Applications, Vol 48, pp.1009-1034, 2005.
14. C. H. Huang, and M. T. Chaing, “A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes,” Int. J. Heat and Mass Transfer, Vol 51, pp.5238–5246, 2008.
15. C. H. Huang, and C. A. Chen, “The Shape Identification Problem in Estimating the Geometry of A Three-Dimensional Irregular Internal Cavity,” CMES-Computer Modeling in Engineering & Sciences, Vol 36, pp. 1–21, 2008.
16. C. H. Huang, and C. A. Chen, “A Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Shape of An Irregular Internal Cavity,” Int. J. Heat and Mass Transfer, Vol 52, pp.2079–2091, 2009.
17. O. M. Alifanov, “Solution of an Inverse Problem of Heat Conduction by Iteration Methods,” J. of Engineering Physics, Vol 26, pp.471-476, 1974.
18. S. Lee, “Optimum design and selection of heat sinks,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 18(4), pp. 812-817, 1995.
19. K. Azar, and R.S. McLeod, and R.E. Caron, “Narrow Channel Heat Sink for Cooling of High Powered Electronic Components,” in Proc. 8th Annual IEEE Semi-Therm Symp., pp. 12-19, 1992.
20. R. W. Knight, and D. J. Hall, and J. S. Goodling, and R. C. Jaeger, “Heat Sink Optimization with Application to Microchannels,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, pp. 832-842, 1992.
21. O. Braunshtein, H. Kalman and A. Ullmann, “Performance and optimization of composed fin arrays,” Heat Transfer Engineering, Vol. 25(4), pp. 4-12, 2004.
22. C. W. Leung, and S. D. Probert, “Heat Exchanger Design:Optimal Thickness(under Natural Convective Conditions) of Vertical Rectangular Fins Protruding Upwards from a Horizontal Rectangular Base,” Applied Energy, No. 29, pp.299-306, 1988.
23. C. W. Leung, and S. D. Probert, “Heat Exchanger Design:Optimal Length of an Array of Uniformly-Spaced Vertical Rectangular Fins Protruding Upwards from a Horizontal Base,” Applied Energy, No. 30, pp.29-35, 1988.
24. A. Bar-Cohen, and M. Jelinek, “Optimum Arrays of Longitudinal Fin in Convective Heat Transfer,” Heat Engineering, Vol. 6, pp.68-78, 1985.
25. R. H. Yeh, and M. Chang, “Optimum Longitudinal Convective Fin Arrays,” International Communications in Heat and Mass Transfer, Vol. 22, No. 3, pp.445-460, 1995.
26. T. Ken, and M. Ishizuka, “Optimization of Parallel Plate Heat sinks for Forced Convection,” IEEE International Society Conference on Thermal Phenomena, pp.266-271, 2000.
27. R. M. Nowell, and Jr., S. H. Bhavnani, and R. C. Jaeger, “Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 3, Sept. 1995.
28. M. Iyengar, and A. Bar-Cohen, “Least-Material Optimization of Vertical Pin-Fin, Plate-Fin and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer,” IEEE International Society Conference on Thermal Phenomena, pp.295-302, 1998.
29. C. L. Chapman, and S. Lee and B. L. Schmidt, “Thermal performance of an elliptical pin fin heat sink,” Proceedings of Tenth IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 24-31, 1994.
30. J. A. Visser, and D. J. de Kock, and F. D. Conradie, “Minimisation of heat sink mass using mathematical optimisation,” Proceedings of Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 252-259, 2000.
31. C. H. Huang, and I. C. Yuan, and H. Ay, “A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, Vol. 46(19), pp. 3629-3638, 2003.
32. L. S. Lasdon, and S. K. Mitter, and A. D. Warren, “The Conjugate Gradient Method for Optimal Control Problem,” IEEE Transactions on Automatic Control, AC-12, pp.132-138, 1967.
33. A.N. Tikhonov, and V.Y. Aresenin, “Solution of ill posed problem,” V. H. Wistom&Sons, Washington, DC, 1997.
34. IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0, IMSL, Houston, TX, 1987.
35. L. C. Hong, and S. J. Hwang, “Study of warpage due to P-V-T-C relation of EMC in IC packaging,” IEEE Transactions on Components and Packaging, Vol 27, pp.291-295, 2004.
36. B. E. Launder, and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp.269-289, 1974.
37. F. P. Incropera and D. P. DeWitt, “Fundamentals of heat and mass transfer,” Wiley, New York, 1996.
38. ASM Handbook Volume 2, “Properties and selection: nonferrous alloysand special-purpose materials, ” ASM International, 1990.