| 研究生: |
黃旭佑 Huang, Hsu-Yu |
|---|---|
| 論文名稱: |
硬模板法合成中空結構之中孔洞氧化矽材與中孔洞碳材之研究 Synthesis of the Hollow structure of Mesoporous Silica and Mesoporous Carbon by Hard-Templating Technology |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 中孔洞碳材 、氧化矽 |
| 外文關鍵詞: | mesoporous carbon, mesoporous silica, PMMA |
| 相關次數: | 點閱:141 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化矽孔洞材料與碳材因為具有廣泛的應用性,如作為吸附劑、固態模板、催化擔體及電極材料,引起許多研究的關注。由於在許多文獻研究中,碳材內部結構、孔洞大小與表面積高低決定了材料的超電容性能。和傳統活性碳材相比,中孔洞碳材由於孔洞尺度大,有利於高速充放電時的電解質離子的進出排列。而在碳材表面積與可儲存之電荷量成正比關係,具表面積越高碳材,能儲存的電荷量越多。因此可知具高表面積之中孔洞碳材於高功率密度的儲能元件的應用上有很大的潛力。本研究為在純水溶劑下利用不同界面活性劑與酚醛樹脂PF2180形成混摻高分子,並利用硬模板─實心奈米氧化矽球(20~30 nm),在碳材中製造出20~30 nm的孔洞,進而製造出表面積碳材可到達2000 m2g-1以上並且具有多重尺度孔洞之中孔洞碳材。
利用硬模板法,以PMMA球取代昂貴的PS作為硬模板以製作氧化矽空心球。而硬模板法製程中,最困難的步驟在於使硬模板與目的產物的前驅物結合。不同於以往研究中繁瑣的表面修飾步驟,本研究中使用明膠活化PMMA球的表面,利用明膠的特殊性質,於水溶液系統中活化不同尺度PMMA球之表面,成功地PMMA球與氧化矽結合,合成出一致性高、結構完整取分散性好之不同尺度的中孔洞氧化矽空心球。
最後,利用氧化矽固定奈米金屬氧化鋅,形成氧化鋅/中孔洞氧化矽複合材料。藉此改變中孔洞氧化矽之性質並且觀察不同水熱條件下構型上的改變。
Because the wide application of porous silica and carbons, such as adsorbents, solid templates, catalytic support and materials for electrode, cause everyone`s attention. It is also well known that the key factor of capacitive performance directly depends on structure、pore size and surface area of carbon materials. Compare with traditional actived carbon, the large pore size of mesoporous carbon would advantage the electrolyte ions in and out at high charge/discharge state. It is also well known that the capacitive performance directly depends on surface area of carbon materials; the higher surface area ,the larger electrons can be stored. So we can know that the mesoporouse carbon with high surface area has good potential in high power density device. In this study is mixing different surfactant and PF2180 to be blended polymers, and using hard-template method-nano silica balls(20~30 nm) to make pores (diameter :20~30 nm ) in carbon , and finally we can synthesis the carbon materials with surface area higher than 2000 m2g-1. And has many different pore sizes.
In hard template method , we replace PS with PMMA to synthesis vesicle silica. However, in previous reports about hard-template method, the step of coating the templates with designed materials is generally regarded as the most challenging because it usually requires complicated surface modification process. Instead of typical and complicated surface modification, gelatine was used to active surface of PMMA, successfully combine PMMA with silica, our synthesis method has high yield and reproducibility. Finally, using silica fix nano size ZnO, to synthesis ZnO/mesoporous silica hybrid material, so that, we can change the character of mesoporous silica. In the study, we can know the structure change in different hydrothermal parameter.
1. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
2. C.-G. Wu, T. Bein, Chem. Mater. 1994, 6, 1109.
3. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
4. C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn. 1996, 2467.
5. A. Sayari, Chem. Mater., 1996, 8, 1840, (1996).
6. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 100, 9906, (1996).
7. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 39, 63,(1994).
8. W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater. 2004,16, 1756.
9. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, D. Zhao, Angew. Chem, 115 , 3254., (2003).
10. A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
11. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
12. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
13. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
14. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
15. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
16. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
17. A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
18. T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
19. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
20. E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
21. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
22. T. F. Todros, Surfactants, Academic Press : London, 1984.
23. R. Schrieber and H. Gareis, “Gelatine handbook :theory and industrial practice”,
Wiley-VCH, (2007).
24. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
25. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids ,1985, 70, 301.
26. F. Caruso, R. A. Caruso, H. Mohwald, Science, 282, 1111, (1998).
27. X. L. Xu, S. A. Asher, J. Am. Chem. Soc., 126, 7940, (2004).
28. G. J. Guan, Z. P. Zhang, Z. Y. Wang, B. H. Liu, D. M. Gao, C. G. Xie, Adv. Mater.,19, 2370, (2007).
29. X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. , 20 ,3927-4019 (2008).
30. M. P. Stevens,” Polymer Chemistry An Introduction”, Oxford University Press, New York ,(1999).
31. H. P. Lin, C. Y. Chang-Chien, C. Y. Tang, C. Y. Lin, Microporous and Mesoporous Materials, 93, 344-348, (2006).
32. C. H. Hsu, H. P. Lin, C. Y. Tang and C. Y. Lin, Materials Chemistry and Physics, 2006,100, 112-116.
33. Y. Han, S. Wu, Y. Sun, D. Li and F. S. Xiao, Chem. Mater.,14, 1144,(2002).
34. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and F.S. Xiao, Angew. Chem. Int. Ed., 7, 1258,(2001).
35. Y. Han, F. S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin, J. Phys. Chem. B, 105, 7963,(2001).
36. S.-T. Wu, U. Efron, and L.D. Hess, Birefringence measurements of liquid ceystals, Appl. Opt. 23, 3911, 1984
37. 松本正一,角田市良著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版,1996
38. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals, Ch.2(World Scientific, Singapore,1993)
39. "TFT/LCD Liquid-crystal Displays Addressed by Thin-Film Transistor",Toshihisa Tsukada, Gordon and Breach Publishers.
40. G. H. Ning, X. P. Zhao, J. Li, C. Q. Zhang, opt. mater. 28, 385,(2006).
校內:2016-07-13公開