簡易檢索 / 詳目顯示

研究生: 林子耕
Lin, Tzu-Keng
論文名稱: 台灣西南海域第一型天然氣水合物儲集層二氧化碳增進天然氣採收之數值模擬研究
Numerical Simulation Study of CO2 Enhanced Gas Recovery in Class 1 Gas Hydrate Deposits Offshore Southwestern Taiwan
指導教授: 謝秉志
Hsieh, Bieng-Zih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 154
中文關鍵詞: 自由氣層海床沉陷地質災害岩石力學
外文關鍵詞: Free Gas Zone, Seafloor Subsidence, Geohazard, Geomechanics
相關次數: 點閱:83下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水合物為一種固態的冰狀結晶,水合物分子由一個小型氣體分子(如甲烷及二氧化碳)以及一定比例的水分子組成,其中水分子將會形成晶格狀牢籠,將氣體分子包覆在其中。氣體水合物在高壓、低溫的環境下形成,多存在於高緯度永凍土層以及海洋中的沉積岩層中。根據台灣長年的探勘研究,在台灣西南海域也有天然氣水合物資源賦存。在天然氣儲集層類型中,第一型天然氣水合物儲集層由於在水合物層下方有自由氣層的存在,因此被認為是最具經濟開採價值的生產標的。大多數的海域水合物資源蘊藏在未完全壓密、膠結的鬆軟沉積層中,因此海域天然氣水合物開採計畫可能有造成海床下陷及地層構造破壞等地質災害之疑慮。本研究係想藉由在第一型水合物地層下方之自由氣層注入二氧化碳以達激勵天然氣生產、維持地層壓力、防止水合物層融解而造成蓋岩阻隔能力影響及二氧化碳封存等多重目的。本研究根據台灣西南海域的地層條件,建立一個典型第一型水合物地層模型,並採用CMG STARS油層模擬軟體進行生產模擬研究。 STARS具有多相流體流動、熱力學、岩石力學及化學反應等數值模擬能力,能夠模擬水合物開採的複雜行為,並對水合物礦區開採進行岩石力學評估。本研究對二氧化碳注入策略進行測試及討論,結果顯示二氧化碳的突破時間控制對第一型水合物地層生產表現十分重要,注入地層的二氧化碳越晚達到生產井則能夠產出越多的天然氣。在本研究的測試結果中可以發現延後二氧化碳開始注入的時間以及降低二氧化碳注入壓力對累積天然氣產量有正向的影響,但卻可能造成地層沉陷以及水合物融解的狀況。放寬生產井的二氧化碳含量限制能夠有助於在低風險的條件下延長生產時間並增加產量,但任意放寬限制可能損害礦區生產獲利。

    Gas hydrates are solid ice-like component composed of water molecules and small size gas molecules, which exist in the condition of high pressure and low temperature. Due to the stable condition of hydrate, it is an unconventional gas resources that widely spread over deep oceanic sediments and permafrost regions. According to the exploration, there are also gas hydrate resources in southwestern Taiwan. There are 3 classes of gas hydrate deposits. Because of the existent of free gas zone beneath the hydrate layer, the class 1 gas hydrate is considered to be the most profitable production target. Most of the marine hydrate resources are found in unconsolidated sedimentary formation. Therefore, there is a risk of potential geohazard caused by seafloor subsidence and hydrate dissociation during the hydrate deposit production. Targeting at the marine class 1 hydrate deposits, the purpose of this study is to establish a safety operation strategy to produce the gas resource from the free gas zone. The CO2 EGR strategy is applied to stabilize the reservoir pressure preventing seafloor subsidence during the gas production. CMG STARS simulator is used to calculate the reservoir production and the geomechanics behavior of the formation. In this study, different operation strategies are tested and discussed to figure out the relevance between the operation methods and the production performances. The results suggest that the CO2¬ breakthrough control is essential to the application of CO2 EGR strategy. Later CO2¬ breakthrough results in greater gas production. By applying CO2 injection delay or lower injection pressure, the production can be extended and result in higher production with more severe situation of formation subsidence and hydrate dissociation. Allowing more CO2 content in produced gas can benefit the overall production without subsidence.

    Abstract I 中文摘要 II 誌謝 III Table of Contents IV List of Table VI List of Figure VIII Nomenclature XIV Chapter 1 Introduction 1 1-1 Background 1 1-2 Green House Effect and Global Energy Demand 1 1-3 Hydrate Resources 9 1-4 Properties of Gas Hydrate 14 1-5 Gas Hydrate Deposits and Production Concept 21 1-6 Motivation and Purpose 27 Chapter 2 Literature Review 28 2-1 Gas Hydrate Production Study 28 2-2 CO2 Enhanced Gas Recovery 39 2-3 Offshore Southwest Taiwan Hydrate Resources 42 2-4 Summary 45 Chapter 3 Methodology 46 3-1 Dissociation Mechanism of Gas Hydrates 46 3-2 Introduction of CMG STARS 50 3-3 Conservation Equation for Gas Hydrate Simulation 51 3-4 Gas Hydrate Module Design 57 3-5 Geomechanical Coupling Calculation 61 Chapter 4 Study Process and Numerical Model Designs 66 4-1 Study Process and the Work flow 67 4-2 Hypothetical Class 1 Hydrate Reservoir Model Design 69 4-3 Numerical Simulation 71 Chapter 5 Results and Discussion 81 5-1 Slice Model Validation 81 5-2 Production with Pure Depressurization 96 5-3 CO2 Enhanced Gas Recovery Strategies 116 Chapter 6 Conclusions and Suggestions 146 References 148

    Al-Hasami, A., Ren, S., & Tohidi, B. (2005). CO2 injection for enhanced gas recovery and geo-storage: reservoir simulation and economics. Paper presented at the SPE Europec/EAGE Annual Conference.
    Anwar, M., Fayyaz, A., Sohail, N., Khokhar, M., Baqar, M., Khan, W., Nizami, A. (2018). CO2 capture and storage: A way forward for sustainable environment. Journal of environmental management, 226, 131-144.
    Boswell, R., & Collett, T. S. (2011). Current perspectives on gas hydrate resources. Energy & environmental science, 4(4), 1206-1215.
    British-Petroleum. (2017). BP statistical review of world energy June 2017.
    Brooks, R., & Corey, T. (1964). Hydraulic properties of porous media. Hydrology Papers, Colorado State University, 24, 37.
    Capuano, L. (2018). International energy outlook 2018 (IEO2018). US Energy Information Administration (EIA): Washington, DC, USA, 2018, 21.
    Chong, Z. R., Yang, S. H. B., Babu, P., Linga, P., & Li, X.-S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied energy, 162, 1633-1652.
    Clemens, T., Secklehner, S., Mantatzis, K., & Jacobs, B. (2010). Enhanced Gas Recovery - Challenges shown at the example of three gas fields. Paper presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain.
    CMG. (2009). Gas Hydrate simulation using STARS. Calgary, Alberta, Canada: Computer Modelling Group Ltd.
    CMG. (2015a). Geomechanics Using GEM and STARS.
    CMG. (2015b). STARS USER GUIDE. Calgary, Alberta Canada: Computer Modelling Group Ltd.
    Diaconescu, C. C., & Knapp, J. (2002). Gas Hydrates of the South Caspian Sea, Azerbaijan: Drilling hazards and sea floor destabilizers. Paper presented at the Offshore Technology Conference.
    Gaddipati, M. (2008). Code comparison of methane hydrate reservoir simulators using CMG STARS: West Virginia University.
    Gaddipati, M. (2014). Reservoirs Modeling of Gas Hydrate Deposits in North Slope of Alaska and Gulf of Mexico: West Virginia University.
    Gou, Y., Hou, Z., Li, M., Feng, W., & Liu, H. (2016). Coupled thermo–hydro–mechanical simulation of CO2 enhanced gas recovery with an extended equation of state module for TOUGH2MP-FLAC3D. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 904-920.
    Hansena, J., Satoa, M., Ruedyb,R., Schmidtc, G. A.,Lob, K. (2019). Global Temperature in 2018 and Beyond.
    IEA. (2017). Energy Technology Perspectives 2017.
    IPCC, Y. L., M & Holland, Elisabeth & Foken, Thomas & Pingintha-Durden, Natchaya. (2007). Sustainability of Gaia: A Question of Balance.
    Kalra, S., & Wu, X. (2014). CO2 injection for Enhanced Gas Recovery. Paper presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, Colorado.
    Kim, H., Bishnoi, P. R., Heidemann, R. A., & Rizvi, S. S. (1987). Kinetics of methane hydrate decomposition. Chemical engineering science, 42(7), 1645-1653.
    Kim, J., & Moridis, G. J. (2012). Numerical studies on coupled flow and geomechanics with the multiple porosity model for naturally fractured tight and shale gas reservoirs. Paper presented at the 46th US Rock Mechanics/Geomechanics Symposium.
    Kim, T. H., Cho, J., & Lee, K. S. (2017). Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects. Applied energy, 190, 1195-1206.
    Kondori, J., Zendehboudi, S., & Hossain, M. E. (2017). A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. Journal of Petroleum Science and Engineering, 159, 754-772.
    Konno, Y., Masuda, Y., Akamine, K., Naiki, M., & Nagao, J. (2016). Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method. Energy conversion and management, 108, 439-445.
    Leeuwenburgh, O., Neele, F., Hofstee, C., Weijermans, P.-J., de Boer, H., Oosthoek, P., Gutierrez-Neri, M. (2014). Enhanced gas recovery–a potential ‘U’for CCUS in The Netherlands. Energy Procedia, 63, 7809-7820.
    Lin, C.-C. (2012). Geological controls of gas hydrate occurrences and gas hydrate resource assessment, offshore southwest Taiwan. National Central University,
    Lin, C.-C., Tien-Shun Lin, A., Liu, C.-S., Chen, G.-Y., Liao, W.-Z., & Schnurle, P. (2009). Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Marine and Petroleum Geology, 26(7), 1118-1131.
    Lin, T.-K., Wu, C.-Y., Hsieh, B.-Z., Chiu, Y.-C., Yang, J.-S., & Chen, P.-Y. (2018). Numerical Study of Formation Mechanisms of CO2 Hydrate. Paper presented at the EGU General Assembly Conference Abstracts.
    Lin, T.-S., Li, K.-S., Liu, C.-S., Lin, C.-C., & Wang, Y.-X. (2017). The Gas Hydrate Exploration and Resource Comprehensive Review in Southwestern Taiwan. Engineering, 90, 63-70.
    Liu, C.-S., Schnurle, P., Wang, Y., San-Hsiung, C., Song-Chuen, C., & Hsiuan, T.-H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615.
    Liu, C., Ye, Y., Meng, Q., He, X., Li, C., Zhang, G. X., Zhu, Y. H. (2014). Characterization of natural gas hydrate recovered from both marine and terrestrial regions in China: laboratory studies. Paper presented at the Proc int’l conf gas hydrates. Beijing.
    Makogon, Y. F. (2010). Natural gas hydrates–A promising source of energy. Journal of Natural Gas Science and Engineering, 2(1), 49-59.
    Makogon, Y. F., Holditch, S., & Makogon, T. Y. (2007). Natural gas-hydrates—A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56(1-3), 14-31.
    Mauna Loa Observatory, E. S. R. L. (2019). Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii.
    Merey, Ş., & Longinos, S. N. (2018). Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea. Journal of Natural Gas Science and Engineering, 52, 248-266.
    Merey, S., & Sinayuc, C. (2016). Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions. Journal of Natural Gas Science and Engineering, 29, 66-79.
    Merey, S., & Sinayuc, C. (2017). Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea. Journal of Natural Gas Science and Engineering, 44, 77-95.
    Milkov, A. V. (2004). Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3-4), 183-197.
    Moridis, G., & Collett, T. (2003). Strategies for gas production from hydrate accumulations under various geologic conditions.
    Moridis, G. J., Collett, T. S., Pooladi-Darvish, M., Hancock, S., Santamarina, C., Boswell, R., Reagan, M. T. (2010). Challenges, uncertainties and issues facing gas production from gas hydrate deposits. Retrieved from
    Moridis, G. J., & Reagan, M. T. (2007). Gas production from class 2 hydrate accumulations in the permafrost. Paper presented at the SPE Annual Technical Conference and Exhibition.
    Narinesingh, J., & Alexander, D. (2014). CO2 enhanced gas recovery and geologic sequestration in condensate reservoir: a simulation study of the effects of injection pressure on condensate recovery from reservoir and CO2 storage efficiency. Energy Procedia, 63, 3107-3115.
    Oragui, O. (2010). Methane Production from Gas-Hydrate Using Depressurization Method.
    Pinkert, S., & Grozic, J. (2014). Prediction of the mechanical response of hydrate‐bearing sands. Journal of Geophysical Research: Solid Earth, 119(6), 4695-4707.
    Ruppel, C. D. (2018). Gas hydrate in nature (2017-3080).
    Rutqvist, J., & Moridis, G. J. (2007). Numerical studies on the geomechanical stability of hydrate-bearing sediments. Paper presented at the Offshore technology conference.
    Sloan, E. D. (1998). Gas hydrates: review of physical/chemical properties. Energy & Fuels, 12(2), 191-196.
    Sloan Jr, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases: CRC press.
    Solano, S. V., Nicot, J.-P., & Hosseini, S. A. (2011). Sensitivity study of CO2 storage in saline aquifers in the presence of a gas cap. Energy Procedia, 4, 4508-4515.
    Song, B., Cheng, Y., Yan, C., Lyu, Y., Wei, J., Ding, J., & Li, Y. (2019). Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation. Journal of Natural Gas Science and Engineering.
    Sultan, N., Garziglia, S., & Colliat, J.-L. (2011). Gas hydrate occurrences and seafloor deformation: investigation of strain-softening of gas-hydrate bearing sediments and its consequence in terms of submarine slope instabilities. Paper presented at the Offshore Technology Conference.
    Sun, C. C. (2016). Introduction of global gas hydrate resources. Paper presented at the Cross-Strait Conference on Geochemical and Environmental Geology.
    Sun, X., Wang, L., Luo, H., Song, Y., & Li, Y. (2019). Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization. Journal of Petroleum Science and Engineering.
    Swindell, R., & Belfroid, S. (2007). Gas production from oceanic class 2 hydrate accumulations. Paper presented at the Offshore Technology Conference.
    Tran, D., Nghiem, L., & Buchanan, L. (2009). Aspects of Coupling Between Petroleum Reservoir Flow And Geomechanics. Paper presented at the 43rd U.S. Rock Mechanics Symposium & 4th U.S. - Canada Rock Mechanics Symposium, Asheville, North Carolina.
    Trofimuk, A., Cherskiy, N., & Tsarev, V. (1973). Accumulation of natural gases in zones of hydrate formation in the hydrosphere. Doklady Akademii Nauk SSSR, 212(4), 931-934.
    Uddin, M., Coombe, D., Law, D., & Gunter, B. (2008). Numerical studies of gas hydrate formation and decomposition in a geological reservoir. Journal of energy resources technology, 130(3), 032501.
    Waite, W. F., Stern, L. A., Kirby, S., Winters, W. J., & Mason, D. (2007). Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophysical Journal International, 169(2), 767-774.
    Wan, Y., Wu, N., Hu, G., Xin, X., Jin, G., Liu, C., & Chen, Q. (2018). Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea. Natural Gas Industry B, 5(6), 631-643.
    Wang, Y., Feng, J.-C., Li, X.-S., Zhang, Y., & Han, H. (2018). Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. Applied energy, 226, 916-923.
    Wu, C.-Y. (2018). Comparisons of Different Hydrate Simulation Design for Class-1 Gas Hydrate Deposits. Thesis of PhD Degree in National Cheng Kung University Department of Resources Engineering, 1-114.
    Wu, C.-Y., Chiu, Y.-C., Huang, Y.-J., & Hsieh, B.-Z. (2017). Effects of Geomechanical Mechanisms on Gas Production Behavior: A Simulation Study of a Class-3 Hydrate Deposit of Four-Way-Closure Ridge Offshore Southwestern Taiwan. Energy Procedia, 125, 486-493.
    Wu, C.-Y., & Hsieh, B.-Z. (2016). Depressurization on Gas Production from Gas Hydrate Prospect on Yuan-An Ridge Offshore Southwest Taiwan. Mining & Metallurgy:The Bulletin of the Chinese Institute of Mining & Metallurgical Engineers, 60(4), 46-61.
    Xia, Z., Hou, J., Liu, Y., Li, S., Du, Q., & Lu, N. (2017). Production characteristic investigation of the Class Ⅰ, Class Ⅱ and Class Ⅲ hydrate reservoirs developed by the depressurization and thermal stimulation combined method. Journal of Petroleum Science and Engineering, 157, 56-67.
    Yang, J.-S. (2016). Numerical simulation of gas hydrate dissociation in lab-scale depressurization experiment. Thesis of Master Degree in National Cheng Kung University Department of Resources Engineering, 1-81.
    Yang, Y., He, Y., & Zheng, Q. (2017). An analysis of the key safety technologies for natural gas hydrate exploitation. Advances in Geo-Energy Research, 1(2), 100-104.
    Zhong, S. X. (2005). Review and prospect of methane hydrate. Retrieved from
    Zhou, X., Fan, S., Liang, D., & Du, J. (2008). Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. Energy conversion and management, 49(8), 2124-2129.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE