| 研究生: |
廖健欽 Liao, Jian-Chin |
|---|---|
| 論文名稱: |
具潛熱冷卻頂板毫米流道熱沉內氧化鋁-水奈米流體於穩態/突然脈衝熱載下熱散逸特性之實驗研究 Heat Dissipation Characteristics of Al2O3-Water Nanofluid Flow in a Mini-Channel Heat Sink under Steady/Surged heat Load - An Experimental Study |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 奈米流體 、毫米流道熱沉 、具潛熱冷卻頂板 、穩態/突然脈衝熱載 |
| 外文關鍵詞: | Nanofluid, Mini-channel heat sink, Latent heat cooling ceiling, Steady/Surged heat load |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究探討具潛熱冷卻頂板毫米流道熱沉內氧化鋁-水奈米流體於穩態/突然脈衝熱載下散熱性能之實驗研究。毫米流道熱沉為無氧銅材料,流道總長為50mm、流道總寬為25.1mm,而單一流道截面積尺寸為寬1mm、高3mm。本實驗研究相關參數範圍:純水與重量百分濃度分別為2%、5%、8%氧化鋁-水奈米流體,粒徑約集中在100nm。
由本穩態實驗結果顯示,添加奈米顆粒確實有降低壁溫的效果,且其壓降增加並不劇烈,其平均熱傳增益皆能提升,最大增益可達41%,但具潛熱冷卻頂板加熱功率設定,並沒有發揮到效果。在突然脈衝熱載暫態結果顯示,二十二烷微膠囊層有發揮其潛熱吸收的效果,在壁溫皆能有效下降,而熱阻降幅也皆在0以上。
The present study aims to investigate an experimental study concerning forced convective heat dissipation characteristics of Al2O3-water nanofluid flow in a mini-channel heat sink under steady/sudden-pulsed power load. Two multi-channel heat sinks featuring a length of 50 mm and a width of 25.1 mm were fabricated of oxygen-free copper with eight parallel mini-channels, each with an inlet cross-section of 1 mm in width and 3 mm in height with their ceiling embedded with or without a layer of a microencapsulated phase change material (MEPCM).
The steady state experimental results obtained reveal that using the Al2O3-water nanofluid to replace the pure water as the coolant through the mini-channel heat sink can give rise to an enhancement of 41%, in the average heat transfer coefficient over that of using the pure water. In the aspect of incorporating the heat sink with its ceiling embedded MEPCM layer and hence the potential latent heat absorption effect, the steady state forced convection results reveal somewhat insignificant effects on cooling performance of Al2O3-water nanofluid. On the other hand, under the sudden-pulsed heat loads, the cooing effectiveness of using the Al2O3-water nanofluid in the heat sink with ceiling embedded MEPCM layer appears further uplifted in comparison with that without embedded MEPCM layer.
[1] D. B. Tuckerman, and R. Pease, “High-performance heat sinking for VLSI,” Electron Device Letters, IEEE, vol. 2, no. 5, pp. 126-129, 1981.
[2] W. Qu, and I. Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” International Journal of Heat and Mass Transfer, vol. 45, no. 12, pp. 2549-2565, 2002.
[3] P.-S. Lee, S. V. Garimella, and D. Liu, “Investigation of heat transfer in rectangular microchannels,” International Journal of Heat and Mass Transfer, vol. 48, no. 9, pp. 1688-1704, 2005.
[4] J. Lee, and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” International Journal of Heat and Mass Transfer, vol. 50, no. 3, pp. 452-463, 2007.
[5] R. Chein, and G. Huang, “Analysis of microchannel heat sink performance using nanofluids,” Applied Thermal Engineering, vol. 25, no. 17, pp. 3104-3114, 2005.
[6] C.-J. Ho, L. Wei, and Z. Li, “An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al 2 O 3/water nanofluid,” Applied Thermal Engineering, vol. 30, no. 2, pp. 96-103, 2010.
[7] 鄭偉成, “毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究,” 成功大學機械工程學系學位論文, pp. 1-121, 2010.
[8] Y. Cao, and A. Faghri, “Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis,” International Journal of Heat and Mass Transfer, vol. 34, no. 1, pp. 93-101, 1991.
[9] K. Ismail, and R. Moraes, “A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications,” International Journal of Heat and Mass Transfer, vol. 52, no. 19, pp. 4195-4202, 2009.
[10] S. M. Wu, G. Y. Fang, and X. Liu, “Dynamic charging performance of a solar latent heat storage unit for efficient energy utilization,” Chemical Engineering & Technology, vol. 33, no. 3, pp. 455-460, 2010.
[11] 高志遠, “直立矩形容器內添加氧化鋁微粒之相變化材料熔解現象之實驗研究,” 2008.
[12] 蕭淳瑞, “充填相變化微膠囊顆粒之矩形容器熱能儲存特性研究,” 2010.
[13] 陳仁輝, “內置PCM管矩型圓環迴路在週期性加熱條件下之熱傳特性研究,” 成功大學機械工程學系學位論文, pp. 1-112, 1998.
[14] 張博傑, “具平行/漸擴毫米流道熱沉內相變化材料微膠囊懸浮液強制對流冷卻特性之實驗研究,” 成功大學機械工程學系學位論文, pp. 1-125, 2015.
[15] C. Popiel, and J. Wojtkowiak, “Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 C to 150 C),” Heat transfer engineering, vol. 19, no. 3, pp. 87-101, 1998.
[16] S. G. Kandlikar, “Single-phase liquid flow in minichannels and microchannels,” Heat transfer and fluid flow in minichannels and microchannels, pp. 87-136, 2006.
[17] Y. Rao, F. Dammel, P. Stephan, and G. Lin, “Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels,” Heat and Mass Transfer, vol. 44, no. 2, pp. 175-186, 2007.
[18] C.-J. Ho, W.-C. Chen, and W.-M. Yan, “Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles,” International Communications in Heat and Mass Transfer, vol. 48, pp. 67-72, 2013.
[19] S. Shen, J. Xu, J. Zhou, and Y. Chen, “Flow and heat transfer in microchannels with rough wall surface,” Energy Conversion and Management, vol. 47, no. 11, pp. 1311-1325, 2006.
[20] C. Ho, and W. Chen, “An experimental study on thermal performance of Al 2 O 3/water nanofluid in a minichannel heat sink,” Applied Thermal Engineering, vol. 50, no. 1, pp. 516-522, 2013.
校內:2021-08-20公開