簡易檢索 / 詳目顯示

研究生: 黃漢婕
Huang, Han-Chieh
論文名稱: 錫3.5銀銲錫合金通電中微結構變化之研究
Microstructure Evolution of Sn-3.5wt%Ag Solder Alloy under Current Stressing
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 電遷移銲錫結晶性質同步輻射X光繞射分析高解析穿透式電子顯微鏡
外文關鍵詞: Electromigration, solder, crystallinity, synchrotron, XRD, HRTEM
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產品的尺寸逐漸縮小,流經電子元件的電流密度大幅提升,使得電遷移(Electromigration)成為影響整體封裝結構可靠度的重要議題之一,因此許多研究紛紛投入研究電流對銲錫接點的影響。材料微結構的變化決定材料於應用上的表現,故本研究以材料的觀點出發,探討Sn-Ag銲錫合金於通電狀態下的行為。本研究將Sn-3.5wt%Ag銲錫薄帶施以5.0×103~7.0×103A/cm2之電流,同時進行臨場(in situ)同步輻射X光繞射實驗(Synchrotron X-ray diffraction),利用X光繞射圖譜分析Sn基地相及Ag3Sn之結晶性質,結果顯示兩者之結晶性質於通電中下降,晶面被破壞的程度與電流密度和結晶面性質相關。由高解析TEM影像可觀察到晶面受電子擾動的情形,本研究依破壞的程度大致將通電中的微結構分成三種類型,並以電致擾動過渡期(Transition stage)及偽非晶質(Pseudo amorphous)組織解釋X光繞射峰下降以及Sn基地相晶界消失的行為。

    The ever decreasing device dimension and thus the increasing current density render electromigration an important concern in the reliability of solder joint. Investigations have been focused on the influence of current stressing on the performance of the solder joint. From materials perspective, the microstructural variation of the solder is expected to govern the joint performance. This study investigated the effect of current stressing on the crystalline structure of Sn-3.5wt%Ag solder alloy. The in situ synchrotron X-ray diffraction analysis was conducted for the Sn-3.5wt%Ag strips under current stressing at 5.0×103~7.0×103A/cm2. The crystallinity of Sn matrix and Ag3Sn compound were analyzed with X-ray spectrum. The results indicated that the crystalline behavior of Sn matrix and Ag3Sn was disrupted by electron flow. The influence of the electrical current depends on the crystalline plane and current density as well. The HRTEM investigation indicated that the crystal plane of Sn matrix and Ag3Sn was damaged by the electron flow, which resulted in three different types of microstructure. The degradation of crystallinity in XRD results and the disappearance of grain boundaries of Sn matrix was caused by the transition stage of electro-disruption and the pseudo amorphous structure in the current stressed specimen.

    中文摘要 I 英文延伸摘要 II 致謝 VIII 總目錄 X 表目錄 XII 圖目錄 XIII 第壹章 簡介 1 1-1 無鉛銲錫之發展及錫銀合金銲錫介紹 1 1-1-1 無鉛銲錫發展趨勢 1 1-1-2 錫銀合金系統簡介與Ag3Sn介金屬化合物 2 1-2 電遷移效應 8 1-3 Ag3Sn相於銲錫合金中之電遷移行為 11 1-4 電遷移效應對二元銲錫合金微結構與結晶性之影響 14 1-4-1 電遷移導致銲錫合金中基地相結晶方向重排及再結 晶之行為 14 1-4-2 電遷移導致銲錫合金中第二相溶解及再結晶之行為 15 1-4-3 電遷移導致銲錫合金中基地相及第二相晶格瓦解之 行為 18 1-4 研究目的 24 第貳章 實驗方法與步驟 25 2-1 實驗構想 25 2-2 Sn-Ag銲錫合金薄帶試片 27 2-2-1 臨場通電實驗 27 2-2-2 臨場熱時效實驗 27 2-2-3 微結構觀察 30 第參章 實驗結果與討論 31 3-1 未通電之錫銀薄帶表面微結構及晶格結構觀察 31 3-2 通電中錫基地相之晶格結構變化 36 3-2-1 通電中錫基地相繞射峰行為變化 36 3-3 通電中Ag3Sn相之晶格結構變化 40 3-3-1 通電中Ag3Sn(020)結晶面之繞射峰積分強度變化 40 3-3-2 通電中Ag3Sn(002)、(201)、(012)及(211)結晶面之繞 射峰積分強度變化 42 3-3-3 通電中Ag3Sn繞射峰積分強度變化之綜合性探討 45 3-3-4 通電中Ag3Sn相晶格膨脹現象與應變量之探討 50 3-4 熱時效處理對Ag3Sn相之晶格結構之影響 56 3-4-1 熱時效處理對Ag3Sn繞射峰積分強度之影響 56 3-4-2 熱時效處理對Ag3Sn應變量之影響 56 3-5 通電中錫銀薄帶之微結構觀察 62 3-5-1 錫銀薄帶表面之SEM分析 62 3-5-2 錫銀薄帶橫截面之FIB分析 62 3-5-3 錫銀薄帶晶體結構之TEM分析 68 3-5-4 微結構分析與晶格電致擾動現象綜合探討 87 3-6 Ag3Sn與Cu6Sn5、Ni3Sn4在通電中的行為討論 90 第肆章 結論 94 參考文獻 96

    1.J. Cannis, “Green IC packaging”, Advanced Packaging, No. 8, 2001, pp. 33–38.
    2.K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, No. 2, 2002, pp. 55-105.
    3.Y. Li, K. S. Moon and C. P. Wong, “Electronics Without Lead”, Science, Vol. 308, No. 2, 2002, pp. 55-105.
    4.S.P. Yu, H.J. Lin and M.H. Hon, “Effects of Process Parameters on the Soldering Behavior of the Eutectic Sn-Zn Solder on Cu Substrate”, Journal of Materials Science: Materials in Electronics, Vol. 11, No.6, 2000, pp.461-471.
    5.R.A. Islam, Y.C. Chan, W. Jillek and S. Islam, “Comparative Study of Wetting Behavior and Mechanical Properties (Microhardness) of Sn–Zn and Sn–Pb Solders”, Microelectronics Journal, Vol.37, No.8, 2006, pp705-713.
    6.L.R. Garcia, W.R. Osorio, L.C. Peixoto and A. Garcia, “Mechanical Properties of Sn–Zn Lead-Free Solder Alloys Based on the Microstructure Array”, Materials Characterization,Vol.61, No.2, 2010, pp.212–220.
    7.M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics” , Materials Science and Enginnering R, Vol. 27, 2000, pp. 95-141.
    8.H. K. Kim, H. K. Liou and K. N. Tu “Morphology of Instability of the Wetting Tips of Eutectic SnBi, Eutectic SnPb, and Pure Sn on Cu”, Journal of Materials Research, Vol. 10, No. 3, 1995, pp. 497–504.
    9.C. Wei, Y. C. Liu, Y. J. Han, J. B. Wan and K. Yang, “Microstructures of Eutectic Sn–Ag–Zn Solder Solidified With Different Cooling Rates”, Journal of Alloys and Compoumds, Vol. 464, No. 1-2, 2008, pp. 301-305.
    10.K. L. Lin, K. I. Chen, H. M. Hsu and C. L. Shi, “Improvement in the Properties of Sn-Zn Eutectic Based Pb-free solder”, Proceedings of the Electronic Components and Technology Conference, 2003, pp. 658-663
    11.W. R. Osorio, D. R. Leiva, L. C. Peixoto, L. R. Garcia and A. Garcia, “Mechanical Properties of Sn–Ag Lead-Free Solder Alloys Based on the Dendritic Array and Ag3Sn Morphology”, Journal of Alloys and Compounds, Vol. 562, 2013, pp. 194-204.
    12.T. B. Massalski, Binary Alloy Phase Diagrams, William W. Scott, Vol. 1, 1986, p. 71
    13.L. R. Garcia, W. R. Osório and A. Garcia, “The Effect of Cooling Rate on the Dendritic Spacing and Morphology of Ag3Sn Intermetallic Particles of A SnAg SolderAlloy”, Materials and design, Vol. 32, No. 5, 2011, pp. 3008-3012.
    14.J. M. Song, J. J. Lin, C. F. Huang and H. Y. Chuang, “Crystallization, Morphology and Distribution of Ag3Sn in Sn–Ag–Cu Alloys and Their Influence on the Vibration Fracture Properties”, Materials Science and Engineering A, Vol. 466, No. 1–2, 2007, pp. 9-17.
    15.S. K. Kang, D. Y. Shih, S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, J. Yu and W. K. Choi, ” Controlling Ag3Sn Plate Formation in Near-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying”, Journal of the Minerals Metals and Materials Society, Vol. 56, No. 6, 2004, pp. 34-38.
    16.C. W Fairhurst and J. Cohen, “The Crystal Structures of Two Compounds Found in Dental Amalgam : Ag2Hg3 and Ag3Sn”, Acta Crystallographica Section B, Vol. 28, 1972, pp. 371-378.
    17.S. Kumar and J. Jung, “Mechanical and Electronic Properties of Ag3Sn Intermetallic Compound in Lead Free Solders Using ab Initio Atomistic Calculation”, Materials Science and Engineering B, Vol.178, 2013, pp. 10-21.
    18.R. An, C. Q. Wang, Y. H. Tian and H. P. Wu, “Determination of the Elastic Properties of Cu3Sn Through First-Principles Calculations”, Journal of Electronic Materials, Vol. 37, No. 4, 2008, pp 447-482.
    19.J. Chen and Y. S. Lai, “Toward Elastic Anisotropy and Strain-Induced Void Formation in Cu–Sn Crystalline Phases”, Microelectronics Reliability, Vol. 49, No. 3, 2009, pp. 264-268.
    20.C. H. Wang, H. T. Shen and W. H. Lai, “Effective Suppression of Electromigration-induced Cu Dissolution by Using Ag as a Barrier Layer in Lead-Free Solder Joints”, Journal of Alloys and Compounds, Vol. 564, 2013, pp. 35-41
    21.C. M. Chen and C. C. Huang, “Effects of Silver Doping on Electromigration of Eutectic SnBi Solder”, Journal of Alloys and Compounds, Vol. 461, 2008, pp. 235-241
    22.H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wire”, Journal og Physics and Chemistry of Solid, Vol. 20, No.1-2, 1961, pp. 76-87.
    23.V. B. Ficks, “On the mechanism of the Mobility of Ions in Metals”, Soviet Physics-Solid State, Vol. 1, 1959, pp. 14-28.
    24.C. M. Tan and A. Roy, “Electromigration in ULSI Interconnects”, Materials Science and Engineering R-Reports, Vol. 58, No. 1-2, 2007, pp. 1-75.
    25.A. S. Nowick and J. J. Burton, Diffusion in Solids: Recent Developments, Academic Press Inc., New York, 1975
    26.J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for Semicinductor Devices”, Proceedings of the IEEE, Vol. 57, No.9, 1969, pp. 1587-1594.
    27.K. N. Tu, “Recent Advances on Electromigration in Very-large-scale-integration of Interconnects”, Journal of Applied Physics, Vol. 94, No. 9, 2003, pp. 5451-5473.
    28.C. Chen, H. M. Tong and K. N. Tu, “Electromigration and Thermomigration in Pb-Free Flip-chip Solder Joints”, Annual Review of Materials Research, Vol. 40, 2010, pp. 531-555.
    29.H. W. Miao and J. G. Duh, “Microstructure Evolution in Sn–Bi and Sn–Bi–Cu solder Joints Under Thermal Aging”, Materials Chemistry and Physics, Vol. 71, No. 3, 2001, pp. 255-271.
    30.X. Hu, Y. C. Chan, K. Zhang and K. C. Yung, “Effect of Graphene Doping on Microstructural and Mechanical Properties of Sn–8Zn–3Bi Solder Joints Together With Electromigration Analysis”, Journal of Alloys and Compounds, Vol. 580, 2013, pp. 162-171.
    31.C. H. Wang, C. Y. Kuo, H. H. Chen and S. W. Chen, “Effects of Current Density and Temperature on Sn/Ni Interfacial Reactions Under Current Stressing”, Intermetallics, Vol. 19, No. 1, 2011, pp. 75-80.
    32.S. W. Chen and C. H. Wang, “Effects of Electromigration on Interfacial Reactions in Cast Sn/Cu Joints”, Journal of Materials Research, Vol. 22, No. 3, 2007, pp. 695-702.
    33.J. R. Lloyd, “Electromigration Induced Resistance Decrease in Sn Conductors”, Journal of Applied Physics, Vol. 94, No. 10, 2003, pp. 6483-6496.
    34.A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek and C. R. Kao, “Electromigration-Induced Microstructure Evolution in Tin Studied by Synchrotron X-ray Microdiffraction”, Applied Physics Letters, Vol. 85, No. 13, 2004, pp. 2490-2492.
    35.Y. T. Chiu, K. L. Lin and Y. S. Lai, “Orientation Transformation of Pb Grains in 5Sn–95Pb/63Sn–37Pb Composite Flip-Chip Solder Joints During Electromigration Test”, Journal of Materials Research, Vol.23, No. 7, 2008, pp. 1877-1881.
    36.Y. T. Chiu, K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong and Y. S. Lai, “Electrorecrystallization of Metal Alloy”, Journal of Alloys and Compounds, Vol. 549, 2013, pp. 190-194.
    37.W. Y. Chen, T. C. Chiu, K. L. Lin and Y. S. Lai, “Electrorecrystallization of Intermetallic Compound in the Sn0.7Cu Solder Joint”, Intermetallics, Vol. 26, 2012, pp. 40-43.
    38.W. Y. Chen, T. C. Chiu, K. L. Lin, A. T. Wu, W. L Jang, C. L. Dong and H. Y. Lee, “Anisotropic Dissolution Behavior of the Second Phase in SnCu Alloys under Current Stress”, Scripta Materialia, Vol. 68, No.5, 2013, pp. 317-320.
    39.何健暘, 電遷移導致共晶錫鋅銲錫合金晶體結構之變化, 國立成功大學碩士論文, 民國一百零二年, pp. 30-38.
    40.W. D. Callister Jr., Materials Science and Engineering: An Introdution, 7th ed., John Wiley & Sons Inc., 2007, p. 61.
    41.J. W. Edington, Practical electron microscopy in materials science, Eindhoven : N.V. Philips, 1976, pp.282-283.
    42.W. D. Callister Jr., Materials Science and Engineering: An Introdution, 7th ed., John Wiley & Sons Inc., 2007, pp. 179-181.
    43.B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, 2001, p. 95.
    44.B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, 2001, p. 441.
    45.T. J. Lardner and R. R. Archer, Mechanics of Solids: An Introduction, McGraw-Hill, 1994, p. 60. C. H. Wang, C. Y. Kuo, H. H. Chen and S. W. Chen, “Effects of Current Density and Temperature on Sn/Ni Interfacial Reactions Under Current Stressing”, Intermetallics, Vol. 19, No. 1, 2011, pp. 75-80.
    46.S. W. Chen and C. H. Wang, “Effects of Electromigration on Interfacial Reactions in Cast Sn/Cu Joints”, Journal of Materials Research, Vol. 22, No. 3, 2007, pp. 695-702.
    47.F. Lin, W. Z. Bi, G. K. Ju, W. R. Wang and X. C. Wei, “Evolution of Ag3Sn at Sn–3.0Ag–0.3Cu–0.05Cr/Cu Joint Interfaces During Thermal Aging”, Journal of Alloys and Compounds, Vol. 509, No.23, 2011, pp. 6666-6672.
    48.T. L. Su, L. C. Tsao, S. Y. Chang and T. H. Chuang, “Morphology and Growth Kinetics of Ag3Sn During Soldering Reaction between Liquid Sn and an Ag Substrate”, Journal of Materials Engineering and Performance, Vol. 11, No. 4, 2002, pp.365-368.
    49.M. L. Huang, F. Yang, N. Zhao and Y. C. Yang, “Synchrotron Radiation Real-time in Situ Study on Dissolution and Precipitation of Ag3Sn Plates in Sub-50 μm Sn–Ag–Cu Solder Bumps”, Journal of Alloys and Compounds, Vol. 602, 2014, pp. 281-284.
    50.H. T. Ma, L. Qu, M. L. Huang, L. Y. Gu, N. Zhao and L. Wang, “In-situ Study on Growth Behavior of Ag3Sn in Sn–3.5Ag/Cu Soldering Reaction by Synchrotron Radiation Real-time Imaging Technology”, Journal of Alloys and Compounds, Vol. 537, 2012, pp. 286-290.
    51.P. Pavone, S. Baroni and S. D. Gironcoli, “α⇌β Phase Transition in Tin: A Theoretical Study Based on Density-Functional Perturbation Theory”, Physical Review B, Vol. 57, No. 17, 1998, pp. 10421-10423.
    52.G. V. Raynor and R. W. Smith, “The Transition Temperature of the Transition between Grey and White Tin”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 244, No. 1236, 1958, pp. 101-109.
    53.K. J. Laidler, Chemical Kinetics, 3rd ed., Harper & Row, p. 42.
    54.B. F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, Journal of Applied Physics, Vol.37, No. 6, 1966, pp. 2375-2377.
    55.D. C. Yeh and H. B. Huntington, “ Extreme Fast-Diffusion System: Nickel in Single Crystal Tin”, Physical Review Letters, Vol. 53, No. 15, 1984, pp. 1469-1472.
    56.B. F. Dyson, T. R. Anthony and D. Turnbull, “Intersitial Diffusion of Copper in Tin”, Journal of Applied Physics, Vol. 38, No. 8, 1967, pp. 3408.
    57.T. C. Huang, T. L. Yang, J. H. Ke, C. C. Li and C. R. Kao, “ Precipitation Induced by Diffusivity Anisotropy in Sn Grains under Electron Current Stressing”, Journal of Alloys and Compounds, Vol. 555, 2013, pp. 237-240.
    58.T. C. Huang, T. L. Yang, J. H. Ke, C. H. Hsueh and C. R. Kao, “Effect of Sn Grain Orientation on Substrate Dissolution and Intermetallic Precipitation in Solder Joints under Electron Current Stressing”, Scripta Materialia, Vol. 80, 2014, pp. 37-40.
    59.Y. Yang, H. Lu, C. Yu and J. M. Chen, “First-Principles Calculations of Structural, Thermodynamic and Electronic Properties of Intermetallic Compounds in Solder”, 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, IEEE, Aug. 2009, pp. 384-387.
    60.H. Flandorfer, U. Saeed, C. Luef, A. Sabbar and H. Ipser, “Interfaces in Lead-Free Solder Alloys: Enthalpy of Formation of Binary Ag-Sn, Cu-Sn, Ni-Sn Intermetallic Compounds”, Thermochimica Acta, Vol. 459, No. 1-2, 2007, pp. 34-39.
    61.O. J. Kleppa, “A calorimetric investigation of the system silver-tin at 450°C”, Acta Metallurgica, Vol.3, No. 3, 1955, pp. 255-259.
    62.A. N. Torgersen, H. Bros, R. Castanet and A. Kjekshus, “Enthalpy of formation for CoGe, CoSn, Ni3.14Sn4,Ni3.50Sn4, AuCo1.66Sn4, AuNi2Sn4 and Au1.17Pt1.82Sn4”, Journal of Alloys and Compounds, Vol. 307, No. 1-2, 2000, pp. 167-173.
    63.G. Ghosh and M. Asta, “Phase Stability, Phase Transformations, and Elastic Properties of Cu6Sn5: Ab initio Calculations and Experimental Results”, Journal of Materials Research, Vol. 20, No. 11, 2005, pp. 3102-3117.
    64.A. Gangulee, G. C. Das and M. B. Bever, “An x-ray diffraction and calorimetric investigation of the compound Cu6Sn5”, Metallurgical Transactions, Vol. 4, No. 9, pp. 2063-2066.

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE