簡易檢索 / 詳目顯示

研究生: 莊紫晴
Chuang, Tzu-Ching
論文名稱: 浮動式風機淺水繫泊系統之數值與實驗分析: 從繫纜設計到失效評估
Numerical and Experimental Studies of Shallow Water Mooring System: From Design to Failure Evaluation
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 190
中文關鍵詞: 淺水繫纜系統浮動式風機全耦合模擬繫纜設計繫纜失效風險評估
外文關鍵詞: shallow water mooring system, full-couple modelling, mooring design, mooring failure, risk analysis
相關次數: 點閱:140下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據2021年的格拉斯哥氣候協議(Glasgow Climate Pact),世界各國期望能在本世紀中(2050年)以前達到淨零碳排放的目標。浮動式離岸風電被視為未來的主流再生能源之一,採用浮動式離岸風機之優點包含: 可模組化於港口施工、海上安裝較快速、可設置範圍較廣、受水深限制較小、以及可降成本空間較大等。目前國際上現有的浮動式示範風機裝置之水深區域約為100 – 200 公尺;而台灣離岸風能密度最高區域之水深約為50 – 100 公尺,對浮動式平台來說為淺水區域,繫纜系統的非線性效果顯著且浮動平台所受二階波浪力也較深水區域明顯,故需重新設計與分析適合該區域之繫纜系統。

    在本文中,針對浮動式風機的淺水繫纜系統進行繫纜系統設計、全耦合模型動態分析、極端破壞事件研究、風險評估等整體性的研究。首先,以單纜系統進行參數分析,考慮不同繫纜單位重、長度、以及複合材料在不同的預張力與運動速度下的張力響應與瞬荷載(Snap Load)發生頻率,以提供淺水繫纜系統設計之初步方案及與環境條件之相關性,如:水深與繫纜之合理比例。此外,本文亦整理浮動式平台相關之國際規範,用於檢驗全耦合動態分析中的浮動式平台響應是否符合國際標準。在數值與實驗數據相互驗證部分,除了確認數值與實驗數據有良好的一致性外,藉由不同比例尺之物理模型結果可發現在大比例尺中,繫纜系統對於浮動式平台有明顯的阻尼效果。

    由於純懸鍊繫纜系統(Pure chain mooring system)應用於淺水區的效果不佳,容易產生瞬荷載與成本過高的問題,本研究中亦考慮了複合式繫纜系統(Hybrid mooring system),其分為三段組合: 上部耐磨段( Top chain)、中間彈性段(flexible material)、下部加重錨鍊(Bottom chain),分析平台姿態反應和繫纜張力變化,更進一步評估繫纜成本與疲勞損傷。最後,針對繫纜系統在極端海況下的失效事件進行探討,匡列出繫纜失效後可能移動之範圍並提出一數學公式來預估不同繫纜配置的平台飄移範圍。本研究之成果期盼能成為浮動式風機發展之基石,提供相關基礎知識以推動浮動式風機在台灣之進展,在淨零碳排放目標的進程中提供微薄的貢獻。

    Net zero is the main goal for many countries to achieve by the middle of this century. Floating wind turbines are recently regarded as a major renewable energy source. The floating offshore wind turbines (FOWTs) have several advantages compared to the other renewable sources, such as a wider installation area, a larger capacity of one unit wind turbine, and higher potential drop in cost. The demonstration wind turbines are currently installed in around 100 – 200 meters of water depth, while some wind energy hotspot is located at approximately 50 – 100 meters, which is a shallow water area for FOWTs. The nonlinear tension effect of the mooring system and the second-order wave force on the floating platform are much larger in shallow water than in deep water. Therefore, proposing a suitable and cost-effective mooring system for shallow water is one of the end goals of this thesis.

    Design of the mooring system, dynamic analysis of the fully coupled models, investigation of extreme damage events, and risk assessment are carried out for the shallow water mooring system of the floating wind turbine in this study. Firstly, studying the tension response of a single mooring line and the snap load occurrence frequency through four different parameters, including per unit weight, pre-tension, the length of the mooring lines, and the movement speed on the top end. Besides, two types of fibre material applied in hybrid mooring models are investigated too. The results provide a preliminary concept design for shallow water mooring systems, for example, the ratio of mooring line length and the water depth. In order to evaluate the performance of the FOWTs, the international standards from different organizations relevant to the FOWTs are listed systematically.

    Full-coupling models are proposed in simulation and experiment and the validation shows a good agreement in both approach methods. It is worth noticing that the mooring system damping effect is more significant with the physical models scale up. Compared to the pure chain mooring systems, the hybrid mooring systems could be more suitable to apply in the shallow water area because the flexible materials (such as Exeter tether and Nylon) can provide horizontal restoring force smoothly. Furthermore, the hybrid mooring systems also show advantages in the cost and operational life. Finally, the failure events of the mooring system under extreme sea conditions are discussed, the possible movement range after the mooring failure is listed, and a mathematical formula is proposed to estimate the platform drift range of different mooring configurations. The results of this study are expected to be the cornerstone of the development of floating wind turbines, provide relevant basic knowledge to promote the development of floating wind turbines in Taiwan and contribute to the progress of the net zero carbon emission target.

    ABSTRACT III ACKNOWLEDGMENT V CONTENTS VI FIGURES LIST VIII TABLES LIST XIII ABBREVIATIONS XV CHAPTER 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Mooring system and FOWTs 3 1.3 Previous researches 6 1.4 Challenges of a shallow water mooring system 10 1.5 Objectives and scope 12 1.6 Thesis outline 13 CHAPTER 2 NUMERICAL AND EXPERIMENTAL MODELING 14 2.1 General 14 2.2 Theoretical background and numerical setup 18 2.3 Experimental setup and calibration 30 2.4 Numerical model validation 49 CHAPTER 3 PARAMETER STUDY ON A SINGLE MOORING LINE 55 3.1 General 55 3.2 Pure chain mooring models 61 3.3 Hybrid mooring models 71 3.4 Discussion and summary 76 CHAPTER 4 DESIGN OF MOORING SYSTEM IN SHALLOW WATER 80 4.1 Design criteria and challenges for shallow water 80 4.2 Guidelines and standards for mooring system design 82 4.3 Mooring system design fundamentals 87 4.4 Mooring design concept proposals 93 CHAPTER 5 FULL COUPLING NUMERICAL MODEL VALIDATION WITH PHYSICAL MODEL TEST 95 5.1 General 95 5.2 Physical dynamic response of the FOWTs 104 5.3 Full coupling numerical model validation 109 5.4 Damping effect in different scale models 113 5.5 Discussion and summary 116 CHAPTER 6 PERFORMANCE COMPARISON OF HYBRID MOORING DESIGNS FOR FOWT IN ULTIMATE LIMIT STATE 117 6.1 General 117 6.2 Static analysis 124 6.3 Dynamic analysis 126 6.4 Influence of bottom chains and the footprints 130 6.5 Fatigue analysis 139 6.6 Cost analysis 141 6.7 Discussion and summary 145 CHAPTER 7 MOORING FAILURE EVALUATION AND RISK ANALYSIS 146 7.1 General 146 7.2 Dynamic response of the floating wind turbine 151 7.3 Hybrid mooring systems investigation 159 7.4 Mathematical method and water depth influence 165 7.5 Risk assessment 169 7.6 Discussion and summary 175 CHAPTER 8 CONCLUSIONS AND SUGGESTIONS 178 8.1 Summary of the thesis 178 8.2 Conclusions 179 8.3 Contributions of the thesis 180 8.4 Suggestions for future work 181 REFERENCE 182

    A. Robertson, J.J., M. Masciola, H. Song,A. Goupee , A. Coulling and C. Luan, 2014. DEFINITION OF THE SEMISUBMERSIBLE FLOATING SYSTEM FOR PHASE II OF OC4, NREL.
    ABS, 2021. Guidance notes on the application of fiber rope for offshore mooring, ABS 90-2011. American Bureau of Shipping Incorporated.
    Akers, R.H., 2012. Why Good Mooring Systems Go Bad, MAINE OCEAN&WIND INDUSTRY INITIATIVE.
    Amaral, G.A., Mello, P.C., do Carmo, L.H., Alberto, I.F., Malta, E.B., Simos, A.N., Franzini, G.R., Suzuki, H., Gonçalves, R.T., 2021. Seakeeping Tests of a FOWT in Wind and Waves: An Analysis of Dynamic Coupling Effects and Their Impact on the Predictions of Pitch Motion Response. Journal of Marine Science and Engineering 9 (2), 179.
    Amy N. Robertson, F.F.W., Jason M. Jonkman, Wojciech Popko, Fabian Vorpahl, Carl Trygve Stansberg, Erin E. Bachynski, 2015. OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA.
    Anchors, V., 2010. Anchor Manual 2010. Vryhof Anchors.
    Arapogianni, A., Genachte, A.B., Ochagavia, R.M., Vergara, J.P., Castell, D., Tsouroukdissian, A.R., Korbijn, J., Bolleman, N., Huera-Huarte, F.J., Schuon, F., 2013. Deep water—the next step for offshore wind energy. European Wind Energy Association (EWEA), 978-972.
    ARIDURU, S., 2004. Fatigue life calculation by rainflow cycle counting method, MECHANICAL ENGINEERING. MIDDLE EAST TECHNICAL UNIVERSITY.
    Association, E.W.E., 2009. The economics of wind energy. EWEA.
    Bae, Y., Kim, M., Kim, H., 2017. Performance changes of a floating offshore wind turbine with broken mooring line. Renewable Energy 101, 364-375.
    BASHAM;, D.L., WRIGHT;, J.W., FERGUSON;, K.I., MOY;, G.W., 2005. DESIGN: MOORINGS, UNIFIED FACILITIES CRITERIA (UFC). UNIFIED FACILITIES CRITERIA.
    Beltran, J.F., Williamson, E.B., Civil, A., 2006. Polyester Rope Analysis Tool.
    Benassai, G., Campanile, A., Piscopo, V., Scamardella, A., 2014. Mooring Control of Semi-submersible Structures for Wind Turbines. Procedia Engineering 70, 132-141.
    Birol, F., Cozzi, L., Gould, T., 2021. World Energy Outlook 2021. International Energy Agency, France.
    Bureau, C.W., 2021. Typhoon Database.
    Campanile, A., Piscopo, V., Scamardella, A., 2018. Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths. Ocean Engineering 148, 349-360.
    Castro-Santos, L., Martins, E., Guedes Soares, C., 2016. Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm. Energies 9 (5).
    Chakrabarti, S.K., 1994. Offshore structure modeling. World Scientific Publishing Co. Pte. Ltd., USA.
    Chuang, T.C., 2016. Experiment Study of the Motion of the Floating Offshore Turbine.
    Clement, C., Kosleck, S., Lie, T., 2021. Investigation of viscous damping effect on the coupled dynamic response of a hybrid floating platform concept for offshore wind turbines. Ocean Engineering 225, 108836.
    Coulling, A.J., Goupee, A.J., Robertson, A.N., Jonkman, J.M., Dagher, H.J., 2013. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of renewable and sustainable energy 5 (2), 023116.
    Council, N.D., 2022. Taiwan’s Pathway to Net-Zero Emissions in 2050. National Development Council.
    Cummins, W., Iiuhl, W., Uinm, A., 1962. The impulse response function and ship motions.
    D'Souza, R., Majhi, S., 2013. Application of lessons learned from field experience to design, installation and maintenance of FPS moorings, Offshore Technology Conference. OnePetro.
    David N. Parish, D.N.P., Lars Johanning, 2015. A Novel Mooring Tether for Highly-Dynamic Offshore Applications; Mitigating Peak and Fatigue Loads via Selectable Axial Stiffness. Marine Science and Engineering.
    Deb, M.K., 1986. Statics and dynamics of a tension leg platform in intact and tether damage conditions. Memorial University of Newfoundland.
    DNV-OS-E302, 2008. OFFSHORE MOORING CHAIN. DET NORSKE VERITAS.
    DNV-OS-J103, 2013. DESIGN OF FLOATING WIND TURBINE STRUCTURES. DET NORSKE VERITAS AS.
    DNV, G., 2014. DNV-RP-C205: Environmental conditions and environmental loads. DNV GL, Oslo, Norway.
    DNV, G., 2015a. Offshore standard DNVGL-OS-E301 position mooring. Høvik, DNV GL AS.[Online] Available from: https://rules. dnvgl. com/docs/pdf/dnvgl/os/2015-07/DNVGLOS-E301. pdf [Accessed 5th February 2018].
    DNV, G., 2015b. Offshore standard DNVGL-OS-E302, Offshore mooring chain. Høvik, Norway.
    DNV, G., 2016. DNV GL-ST-0437: Loads and Site Conditions for Wind Turbines, DNV GL: Oslo, Norway.
    DNV, G., 2018. DNVGL-SE-0422: Certification of floating wind turbines.
    DNV, G., 2019. DNVGL-RP-0286: Coupled analysis of floating wind turbines, Recommend Practice DNVGL-RP-0286.
    Dongsheng Qiao, J.Y., Jinping Ou 2014. Fatigue analysis of deepwater hybrid mooring line under corrosion effect. POLISH MARITIME RESEARCH.
    Durakovic, A., 2020. WindFloat Atlantic Fully Up and Running.
    Durakovic, A., 2021. Largest Floating Offshore Wind Farm Stands Complete.
    Enterprise, S., 2020. Mooring and Anchoring Research Report: Mooring and Anchoring Literature Review and Consultation. Xodus Group.
    Europe, W., 2017. Floating offshore wind vision statement. Wind Europe: Brussels, Belgium.
    Fabian Wendt, A.R., Jason Jonkman, 2017. FAST Model Calibration and Validation of the OC5DeepCwind Floating Offshore Wind System Against Wave Tank Test Data, in: Fabian Wendt, A.R., Jason Jonkman (Ed.), The 27th International Ocean and Polar Engineering Conference. National Renewable Energy Laboratory, San Francisco, California.
    Faltinsen, O.M., 1999. Sea loads on ships and offshore structures. CAMBRIDGE UNIVERSITY PRESS, United Kingdom.
    Fonseca, N., Soares, C.G., 1970. Time domain analysis of vertical ship motions. WIT Transactions on The Built Environment 5.
    Galbraith, D.N., Wolfram, B., Leivestad, S., 2008. ISO Floating and Fixed Standards ISO 19902, ISO 19903 and ISO 19904, Offshore Technology Conference. OnePetro.
    Gao, Z., 2008. Stochastic Response Analysis of Mooring Systems with Emphasis on Frequency-domain Analysis of Fatigue due to Wide-band Response Processes, Faculty of Engineering Science and Technology Department of Marine Technology. Norwegian University of Science and Technology.
    Gordelier, T., Parish, D., Thies, P., Weller, S., Davies, P., Le Gac, P.-Y., Johanning, L., 2018. Assessing the performance durability of elastomeric moorings: Assembly investigations enhanced by sub-component tests. Ocean Engineering 155, 411-424.
    Hall, M., Goupee, A., 2015. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Engineering 104, 590-603.
    Hansen, M., 2015. Aerodynamics of wind turbines. Routledge.
    Haohai Engineering Consulting Co., L., 2015. The Planning of Environment protection and promotion on Kang-Nan coast along Hsin Chu city. Water Resources Agency, Hsinchu City.
    Henderson, A.R., Witcher, D., Morgan, C.A., 2009. Floating support structures enabling new markets for offshore wind energy, Proceedings of the European Wind Energy Conference (EWEC), Marseille, France.
    Hordvik, T., 2010. Alternative Design of Anchor Systems for Floating Windmills.
    Hordvik, T., 2011. Design analysis and optimisation of mooring system for floating wind turbines, Department of Marine Technology. Norwegian University of Science and Technology, Norwegian, p. 71.
    Hou, H.M., Dong, G.H., Xu, T.J., 2020. Assessment of fatigue damage of mooring line for fish cage under wave groups. Ocean Engineering 210.
    Hsu, W.-t., Thiagarajan, K.P., Hall, M., MacNicoll, M., Akers, R., 2014. Snap loads on mooring lines of a floating offshore wind turbine structure, International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, p. V09AT09A036.
    Hsu, W.-t., Thiagarajan, K.P., Manuel, L., 2017. Extreme mooring tensions due to snap loads on a floating offshore wind turbine system. Marine Structures 55, 182-199.
    Hsu, W.-Y., Chuang, T.-C., Yang, R.-Y., Hsu, W.-T., Thiagarajan, K.P., 2019. An experimental study of mooring line damping and snap load in shallow water. Journal of Offshore Mechanics and Arctic Engineering 141 (5).
    Huang, S., Vassalos, D., 1993. A numerical method for predicting snap loading of marine cables. Applied Ocean Research 15 (4), 235-242.
    Huse, E., 1991. New developments in prediction of mooring system damping, Offshore Technology Conference. OnePetro.
    IBERDROLA, 2021. Floating offshore wind power: a milestone to boost renewables through innovation, FLOATING OFFSHORE WIND.
    Ibrion, M., Paltrinieri, N., Nejad, A.R., 2020. Learning from failures: Accidents of marine structures on Norwegian continental shelf over 40 years time period. Engineering Failure Analysis 111, 104487.
    Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J.L., Vicente, R.D., Habekost, T., Ramirez, L., Potestio, S., Molins, C., Trubat, P., 2020. Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs. Core Wind.
    Ioannou, A., Angus, A., Brennan, F., 2018. Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters. Energy Sources, Part B: Economics, Planning, and Policy 13 (5), 281-290.
    James, R., Ros, M.C., 2015. Floating offshore wind: market and technology review. The Carbon Trust.
    Ji, C.-Y., Yuan, Z.-M., Chen, M.-l., 2011. Study on a new mooring system integrating catenary with taut mooring. China Ocean Engineering 25 (3), 427-440.
    Ji, C., Yuan, Z., 2015. Experimental study of a hybrid mooring system. Journal of Marine Science and Technology 20 (2), 213-225.
    Johanning, L., Smith, G.H., Wolfram, J., 2007. Measurements of static and dynamic mooring line damping and their importance for floating WEC devices. Ocean Engineering 34 (14-15), 1918-1934.
    Jonkman, J., 2010. Definition of the floating system for phase IV of OC3 (No. NREL/TP-500-47535). National Renewable Energy Laboratory (NREL).
    Jonkman, J., 2013. The new modularization framework for the FAST wind turbine CAE tool, 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p. 202.
    Jonkman, J., Butterfield, S., Musial, W., Scott, G., 2009. Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Lab.(NREL), Golden, CO (United States).
    Jonkman, J., Hayman, G., Jonkman, B., Damiani, R., 2014. AeroDyn v15 Users Guide and Theory Manual, NREL, Denver, Colorado.
    Kang, J., Sun, L., Sun, H., Wu, C., 2017. Risk assessment of floating offshore wind turbine based on correlation-FMEA. Ocean Engineering 129, 382-388.
    Kauzlarich, J., 1989. The Palmgren-Miner rule derived, Tribology Series. Elsevier, pp. 175-179.
    Khalid, F., Johanning, L., Thies, P.R., Newsam, D., 2020. Development and demonstration of novel nonlinear mooring solutions for floating offshore wind.
    Kim, H., Jeon, G.-Y., Choung, J., Yoon, S.-W., 2013. Study on Mooring System Design of Floating Offshore Wind Turbine in Jeju Offshore Area. International Journal of Ocean System Engineering 3 (4), 209-217.
    Kim, M.H., Zhang, Z., 2009. Transient effects of tendon disconnection on the survivability of a TLP in moderate-strength hurricane conditions. International Journal of Naval Architecture and Ocean Engineering 1 (1), 13-19.
    Kitney, N., 2000. Hydrodynamic loading of catenary mooring lines. University of London, University College London (United Kingdom).
    Klingan, K.E., 2016. Automated Optimization and Design of Mooring Systems for Deep Water. NTNU.
    Kuzu, A.C., Akyuz, E., Arslan, O., 2019. Application of fuzzy fault tree analysis (FFTA) to maritime industry: a risk analysing of ship mooring operation. Ocean Engineering 179, 128-134.
    Kvitrud, A., Bache, B.T., 2014. Anchor line failures- Norwegian Continental Shelf - 2010-2014.
    Kvittem, M.I., Moan, T., 2015. Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine. Marine Structures 40, 38-59.
    Lee, T.-L., 2010. Assessment of the potential of offshore wind energy in Taiwan using fuzzy analytic hierarchy process. The Open Civil Engineering Journal 4 (1).
    Leong, M., 2021. Japan awards first floating offshore wind tender.
    Lian, Y., Liu, H., Hu, L., 2015. Feasibility analysis of a new hybrid mooring system applied for deep waters, The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro.
    Liang, M., Wang, X., Xu, S., Ding, A., 2019. A shallow water mooring system design methodology combining NSGA-II with the vessel-mooring coupled model. Ocean Engineering 190.
    Ma, K.-t., Shu, H., Smedley, P., L'Hostis, D., Duggal, A., 2013. A historical review on integrity issues of permanent mooring systems, Offshore Technology Conference. Offshore Technology Conference.
    Margaronis, S., 2021. New England Aqua Ventus will launch first US floating offshore wind turbine In 2023/24.
    Masciola, M., Robertson, A., Jonkman, J., Driscoll, F., 2011. Investigation of a FAST-OrcaFlex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines. National Renewable Energy Lab.(NREL), Golden, CO (United States).
    Matha, D., 2010. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009. National Renewable Energy Lab.(NREL), Golden, CO (United States).
    Matha, D., 2017. Impact of aerodynamics and mooring system on dynamic response of floating wind turbines. University of Stuttgart.
    Moriarty, P.J., Hansen, A.C., 2005. AeroDyn theory manual. National Renewable Energy Lab., Golden, CO (US).
    Musial, W., Spitsen, P., Beiter, P., Duffy, P., Marquis, M., Cooperman, A., Hammond, R., Shields, M., 2021. Offshore Wind Market Report: 2021 Edition. U.S. Department of Energy.
    Orcina, L., 2020. OrcaFlex user manual: OrcaFlex version 11.0 c, Daltongate Ulverston Cumbria, UK.
    Orcina, L., 2021. OrcaWave user manual: version 11.1 d, Daltongate Ulverston Cumbria, UK.
    Parish, D.N., Thies, P.R., Johanning, L., 2015. A Novel Mooring Tether for Highly-Dynamic Offshore Applications; Mitigating Peak and Fatigue Loads via Selectable Axial Stiffness. Journal of Marine Science and Engineering.
    Pham, H.-D., Cartraud, P., Schoefs, F., Soulard, T., Berhault, C., 2019. Dynamic modeling of nylon mooring lines for a floating wind turbine. Applied Ocean Research 87, 1-8.
    Qiao, D., Ou, J., 2014. Mooring line damping estimation for a floating wind turbine. The Scientific World Journal 2014.
    Rincon, P., 2021. COP26: New global climate deal struck in Glasgow, in: editor, S. (Ed.). BBC News website.
    Robertson, A., 2017. Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign, International Society of Offshore and Polar Engineers’ International Ocean and Polar Engineering Conference San Francisco. National Renewable Energy Laboratory, California.
    Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., Luan, C., 2014a. Definition of the semisubmersible floating system for phase II of OC4. National Renewable Energy Lab.(NREL), Golden, CO (United States).
    Robertson, A., Jonkman, J., Musial, W., Vorpahl, F., Popko, W., 2013. Offshore code comparison collaboration, continuation: Phase II results of a floating semisubmersible wind system. National Renewable Energy Lab.(NREL), Golden, CO (United States).
    Robertson, A., Jonkman, J., Vorpahl, F., Popko, W., Qvist, J., Frøyd, L., Chen, X., Azcona, J., Uzunoglu, E., Guedes Soares, C., 2014b. Offshore code comparison collaboration continuation within IEA wind task 30: Phase II results regarding a floating semisubmersible wind system, International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, p. V09BT09A012.
    Robertson, A.N., Wendt, F., Jonkman, J.M., Popko, W., Borg, M., Bredmose, H., Schlutter, F., Qvist, J., Bergua, R., Harries, R., Yde, A., Nygaard, T.A., Vaal, J.B.d., Oggiano, L., Bozonnet, P., Bouy, L., Sanchez, C.B., García, R.G., Bachynski, E.E., Tu, Y., Bayati, I., Borisade, F., Shin, H., van der Zee, T., Guerinel, M., 2016. OC5 Project Phase Ib: Validation of Hydrodynamic Loading on a Fixed, Flexible Cylinder for Offshore Wind Applications. Energy Procedia 94, 82-101.
    Robertson, A.N., Wendt, F., Jonkman, J.M., Popko, W., Dagher, H., Gueydon, S., Qvist, J., Vittori, F., Azcona, J., Uzunoglu, E., 2017. OC5 project phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine. Energy Procedia 137, 38-57.
    Roddier, D., Cermelli, C., Aubault, A., Weinstein, A., 2010. WindFloat: A floating foundation for offshore wind turbines. Journal of renewable and sustainable energy 2 (3), 033104.
    Rychlik, I., 1987. A new definition of the rainflow cycle counting method. International journal of fatigue 9 (2), 119-121.
    Sebastian, T., 2012. The aerodynamics and near wake of an offshore floating horizontal axis wind turbine.
    Sekita, K., Sakai, M., 1984. Model tests to establish a design method for TLP-tether systems, Offshore Technology Conference. OnePetro.
    Selot, F., Fraile, D., Brindley, G., 2019. Offshore Wind in Europe: Key trends and statistics 2018, in: Walsh, C. (Ed.). WindEurope.
    Shimada, K., Shiroeda, T., Hotta, H., Phuc, P.v., Kida, T., 2021. Fukushima Offshore Wind Consortium.
    Soper, W.G., 1967. Scale Modeling. International Science and Technology (62), 60-69.
    Spearman, D.K., Strivens, S., Matha, D., Cosack, N., Macleay, A., Regelink, J., Patel, D., Walsh, T., 2020. Floating Wind Joint Industry Project Phase II Summary report. The Carbon Trust.
    Stenlund, T., 2018. Mooring system design for a large floating wind turbine in shallow water. NTNU.
    Stewart, G., Muskulus, M., 2016. A review and comparison of floating offshore wind turbine model experiments. Energy Procedia 94, 227-231.
    Strivens, S., Northridge, E., Evans, H., Harvey, M., Camp, T., Terry, N., 2021. Floating Wind Joint Industry Project Phase III Summary report. The Carbon Trust.
    Susmel, L., 2009. Multiaxial notch fatigue. Elsevier.
    Technology, S.S., 2009. Advanced Anchoring and Mooring Study.
    The 2nd River Management Office, W., MOEA, 2005. The Planning of Sustainable Environmental Regeneration at Kang-Nan coast, Hsinchu City The 2nd River Management Office, WRA, MOEA, Taiwan.
    Thomsen, J.B., Ferri, F., Kofoed, J.P., Black, K., 2018. Cost optimization of mooring solutions for large floating wave energy converters. Energies 11 (1), 159.
    Triantafyllou, M., Yue, D., Tein, D., 1994. Damping of moored floating structures, Offshore Technology Conference. OnePetro.
    Vicente, P.C., Falcão, A., Justino, P., 2011. Slack-chain mooring configuration analysis of a floating wave energy converter, Proceedings of the 26th International Workshop on Water Waves and Floating Bodies, Athens, Greece. Citeseer.
    Vigara, F., Cerdán, L., Durán, R., Muñoz, S., Lynch, M., Doole, S., Molins, C., Trubat, P., Guanche, R., 2019. D1.2 DESIGN BASIS.
    Vryhof, A., 2010. Anchor Manual -The Guide to Anchoring. Vryhof anchors.
    Wang, L., Robertson, A., Jonkman, J., Yu, Y.-H., Koop, A., Nadal, A.B., Li, H., Bachynski-Polić, E., Pinguet, R., Shi, W., 2021. OC6 Phase Ib: Validation of the CFD predictions of difference-frequency wave excitation on a FOWT semisubmersible. Ocean Engineering 241, 110026.
    Weiting Hsu, T.-C.C., Wen-Yang Hsu, Krish Sharman, and Ray-Yeng Yang, 2019. An Experimental Study of Snap Loads on a Vertical Hanging Cable System, International Conference on Ocean, Offshore & Arctic Engineering, Glasgow, Scotland, UK.
    Wen Yang Hsu, T.C.C., Ray-Yeng Yang, Wei Ting Hsu, Krish P. Thiagarajan, 2018. An Experimental Study of Mooring Line Damping and Snap Load in Shallow Water. Journal of Offshore Mechanics and Arctic Engineering 141 (5).
    WindEurope, 2022. Scotland awards seabed rights for massive amounts of offshore wind, most of it floating.
    Xu, K., 2020. Design and Analysis of Mooring System for Semi-submersible Floating Wind Turbine in Shallow Water.
    Xu, K., Gao, Z., Moan, T., 2018a. Effect of hydrodynamic load modelling on the response of floating wind turbines and its mooring system in small water depths. Journal of Physics: Conference Series 1104.
    Xu, K., Larsen, K., Shao, Y., Zhang, M., Gao, Z., Moan, T., 2021. Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design. Ocean Engineering 219, 108377.
    Xu, S., Ji, C.-y., Soares, C.G., 2018b. Experimental and numerical investigation a semi-submersible moored by hybrid mooring systems. Ocean Engineering 163, 641-678.
    Xu, S., Ji, C., Soares, C.G., 2018c. Experimental study on taut and hybrid moorings damping and their relation with system dynamics. Ocean Engineering 154, 322-340.
    Xu, S., Wang, S., Soares, C.G., 2020. Experimental investigation on hybrid mooring systems for wave energy converters. Renewable Energy 158, 130-153.
    Yang, C.K., Kim, M.-H., 2010. Transient effects of tendon disconnection of a TLP by hull–tendon–riser coupled dynamic analysis. Ocean Engineering 37 (8-9), 667-677.
    Yang, C.K., Padmanabhan, B., Murray, J., Kim, M., 2008. The transient effect of tendon disconnection on the global motion of ETLP, International Conference on Offshore Mechanics and Arctic Engineering, pp. 497-507.
    Yang, M., Khan, F., Lye, L., Amyotte, P., 2015. Risk assessment of rare events. Process Safety and Environmental Protection 98, 102-108.
    Yang, R.-Y., Chuang, T.-C., Zhao, C., Johanning, L., 2022. Dynamic Response of an Offshore Floating Wind Turbine at Accidental Limit States—Mooring Failure Event. Applied Sciences 12 (3), 1525.
    Yu, J., Hao, S., Yu, Y., Chen, B., Cheng, S., Wu, J., 2019. Mooring analysis for a whole TLP with TTRs under tendon one-time failure and progressive failure. Ocean Engineering 182, 360-385.
    Zeraatgar, H., Asghari, M., Bakhtiari-Nejad, F., 2010. A study of the roll motion by means of a free decay test. Journal of Offshore Mechanics and Arctic Engineering 132 (3).
    Zhao, J.L.F., 2021. Global wind report 2021. Global Wind Energy Council, Belgium.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE