簡易檢索 / 詳目顯示

研究生: 林炳賢
Lin, Ping-Hsien
論文名稱: 電腦繪圖中三維相機取樣模型及分析
Three-dimensional Camera Sampling Models and Analysis in Computer Graphics
指導教授: 李同益
Lee, Tong-Yee
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 101
中文關鍵詞: 相機取樣場影像式繪圖偏心環場景
外文關鍵詞: camera-sampling field, acentric panorama view, image-based rendering
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在電腦圖學及電腦視覺中,“相機模型”一詞通常是指一個將三維空間對應到二維影像之透視投影轉換矩陣,此一模型在許多與透視投影幾何相關的領域中已被廣泛使用,在電腦圖學中,我們利用它將虛擬的三維場景呈像在二維的螢幕上,而在電腦視覺中,許多透視投影之幾何特性也藉由此模型推導而出,以利三維場景重構之應用。然而,此一模型無法明確地表現出與相機取樣相關之性質。相機取樣在電腦圖學的許多應用中扮演著非常重要的角色,諸如影像式繪圖(image-based rendering)與體積繪圖(volume rendering)之splatting技術、貼圖過濾(texture filtering)、多層次精細度(level of detail, LOD)之轉換評量標準、相機對場景取樣品質好壞之評量,…等等。就我們所知,由於沒有一個共通的模型來描述相機取樣,相關的研究常被個別獨立看待,許多類似的取樣性質也被個別推導而出。在這篇論文中,我們將對一些與相機取樣相關的研究主題做討論,包含一個對環場場景取樣之技術和一個用以關連並解決許多電腦圖學應用的相機取樣數學模型。
      在電腦圖學中,利用影像式技術(image-based techniques)以築構虛擬場為一新穎之技術,相較於傳統利用多邊形來繪圖方法做比較,此類技術易於達到固定畫面率(constant frame rate)並且易於保持畫面播放之平順。在本篇論文中,我們首先提出一個對環場影像取樣的相機排列架構,稱為“偏心環場景(acentric panorama view)”,並提出在此架構下的可視範圍選取(view culling)和表列優先繪圖演算法(list-priority rendering algorithm)等的繪圖加速方法。此外,此一環場取樣方式更可拓展到可供三維遊走(walkthrough)的虛擬環境中。
      其次,我們提出一個新的相機模型:相機取樣場(camera-sampling field)。基於相機在影像平面上為均勻之取樣,我們用向量場的數形式來表示相機取樣密度之分佈。我們提供完整的推導過程,並討論多項向量場之數學性質在相機取樣場之意義,包括通量(flux)、散度(divergence)、旋度(curl)、梯度(gradient)、等位面(level surface),…等;最後介紹相機取樣場在電腦圖學中之多項應用,包括影像式繪圖與體積繪圖之splatting技術、貼圖過濾、多層次精細度之轉換評量標準,…等,這些應用範例顯示我們所提出之相機模型可廣泛的被應用在與相機取樣分析有關之領域。

      Conventionally, the term “camera model” in computer graphics and computer vision refers to a perspective projection matrix that maps a 3D world space onto a 2D image space. This model has worked very successfully in many domains relating directly to perspective geometry. In computer graphics, we use it to render a scene onto an image. In computer vision, it is used to derive many perspective projection geometry properties for scene reconstruction. However, this camera model does not concisely reveal the camera sampling properties. Camera sampling analysis can play an important role in many applications such as splatting for image-based rendering and volume rendering, texture filtering, level transition criterion for LOD, and sampling quality evaluation for cameras with scenes, and so on. To the best of our knowledge, because there is no general model to describe camera sampling, these works are sometimes treated independently and similar relations are derived. In this dissertation we deal with some research issues about camera sampling, including a technique to sample the panorama scenes and a mathematical model for camera sampling to relate and solve many applications in computer graphics.
      Using image-based techniques to construct a virtual world are novel approaches in computer graphics. These approaches are easier to achieve constant frame rate and thus preserve the visual smoothness. In this dissertation, a novel 2D plenoptic function called “acentric panorama view (APV)” is first introduced to sample the panorama scenes. The rendering of an APV can be accelerated by view culling and list-priority rendering algorithm. Multiple APVs with special fields of view, 45, 60, 90, and 120, can be integrated into a larger configuration called augmented APVs, which augments the walking area in a planar walkthrough environment to form a 4D plenoptic function.
      The second, major part in this dissertation is a new camera model called camera-sampling field. It describes the sampling density distribution of a pinhole camera according to the property that the distribution of samples on an image plane is uniform. A vector field is then used to represent this sampling density distribution. We call this vector field the “camera-sampling field.” We give the derivations and discuss some essential properties of the camera-sampling field, including flux, divergence, curl, gradient, level surface, and sampling patterns. This vector field reveals camera-sampling concisely and facilitates camera sampling analysis in many applications. The usage for this vector field in several computer graphics applications is introduced, such as determining the splat kernel for image-based rendering, texture filtering, mipmap level selection, level transition criteria for LOD and LDI-construction. These demonstrations verify the widely usage of camera-sampling field to many domains involving camera sampling.

    摘要...........................................................................I Abstract.....................................................................III Acknowledgements...............................................................V Contents......................................................................VI List of Tables..............................................................VIII List of Figures...............................................................IX Chapter 1 Introduction...................................................1 1.1 Related Works about Plenoptic Function Reconstruction..................1 1.2 Related Works about Camera Sampling....................................4 1.3 Contributions..........................................................7 1.4 The Organization of this Dissertation..................................8 Chapter 2 Acentric Panorama View (APV)..................................10 2.1 Acentric Panorama View (APV)..........................................10 2.1.1 The Idea of APV.......................................................10 2.1.2 The Representation of APV.............................................14 2.1.3 Sampling (sampling density and visibility) of APV.....................15 2.2 Acceleration of APV Rendering.........................................19 2.2.1 View Culling in APV...................................................20 2.2.2 List-Priority Rendering Algorithm in APV..............................20 2.3 Extension of APV - Multiple APVs......................................22 2.3.1 Highly Enhance the Visibility In a Small Walking Area.................22 2.3.2 Augment Walking Area by Assembling APVs (Augmented APVs)..............27 2.4 Experimental Results..................................................32 Chapter 3 Camera-Sampling Field.........................................37 3.1 Camera-Sampling Field.................................................37 3.1.1 2D Camera-Sampling Field Derivation...................................39 3.1.2 3D Camera-Sampling Field Derivation...................................41 3.2 Properties of Camera-Sampling Field...................................44 3.2.1 Camera-Sampling Flux..................................................44 3.2.2 Divergence and Curl...................................................45 3.2.3 Level Surface and Gradient............................................49 3.2.4 Aspect Ratio of Sampling Pattern......................................50 3.2.5 Addition of Camera-Sampling Field.....................................55 3.3 Applications of Camera-Sampling Field.................................57 3.3.1 Local Sampling Analysis...............................................57 3.3.1.1 Splatting Kernel for Image-Based Rendering............................58 3.3.1.2 Texture Filtering.....................................................61 3.3.1.3 Projection Factor for a Small Surface Fragment........................61 3.3.1.4 Mipmap Level Selection................................................62 3.3.1.5 Level Transition Criterion for View Dependent LOD.....................62 3.3.2 Global Sampling Analysis..............................................62 3.3.2.1 Sampling Optimization.................................................62 3.3.2.2 Level Transition Criteria for View Independent LOD....................66 3.3.2.3 LDI-construction......................................................73 Chapter 4 Conclusion and Future Work....................................82 Reference.....................................................................85 Appendix A Some Related Mathematical Definitions about...................89 A.I Gradient, divergence, and curl in spherical coordinates...............90 Appendix B Derivations of 2D Experiments.................................92 Vita..........................................................................99

    [1] E.H. Adelson and J.R. Bergen, “The Plenoptic Function and the Elements of Early Vision,” Computational Models of Visual Processing, Chapter 1, Edited by Michael Landy and J. Anthony Movshon. The MIT Press, Cambridge, Mass. 1991.
    [2] R. L. Burden, J. D. Faires, “Numerical Analysis,” 5th ed., PWS Pub. Co., 1993, ISBN: 0534932193.
    [3] C. F. Chang, G. Bishop, and A. Lastra, “LDI Tree: A Hierarchical Representation for Image-Based Rendering,” Proc. SIGGRAPH ’99, pp. 291-298 (1999).
    [4] S. E. Chen and L. Williams, “View Interpolation for Image Synthesis,” Proceedings of SIGGRAPH ’93, pp. 270-288, 1993.
    [5] S. E. Chen, “QuickTime VR - An Image-Based Approach to Virtual Environment Navigation,” Proceedings of SIGGRAPH ’95, pp. 29-39, 1995.
    [6] S. Fleishman, D. Cohen-Or, and D. Lischinski. “Automatic Camera Placement for Image-Based Modeling.” In Proceedings of Pacific Graphics 99, pages 12--20, 1999.
    [7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The Lumigraph,” Proceedings of SIGGRAPH ’96, pp. 43-54, 1996.
    [8] P. Heckbert, “Texture Mapping Polygons in Perspective,” NYIT Computer Graphics Lab Technical Memo #13, 1983.
    [9] P. S. Heckbert. “Survey of Texture Mapping.” IEEE Computer Graphics and Applications, 6(11):56--67, Nov. 1986.
    [10] P. S. Heckbert. “Fundamentals of Texture Mapping and Image Warping.” Master's thesis, University of California, Berkeley, 1989.
    [11] H. Hoppe, “View-Dependent Refinement of Progressive Meshes.” Proceedings of SIGGRAPH 97, pp. 189-198, 1997.
    [12] E. Kreyszing, “Advanced Engineering Mathematics,” 5th ed., Wiley, 1983, ISBN: 0471862517.
    [13] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proceedings of SIGGRAPH ’96, pp. 31-42, 1996.
    [14] P. H. Lin and T. Y. Lee, “The Camera Sampling Field,” 1999 National Computer Symposium (NCS99), pp. 398-405, 1999, Taiwan. (in Chinese)
    [15] P. H. Lin and T. Y. Lee, “Splatting Footprint Size Evaluation for Image-Based Rendering Using Camera Sampling Field,” International Conference on Distributed Multimedia Systems, Taiwan, pp. 95-100, 2001.
    [16] L. McMillan, “A List-Priority Rendering Algorithm for Redisplaying Projected Surfaces,” Technical Report 95-005, University of North Carolina, 1995.
    [17] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based rendering System,” Proceedings of SIGGRAPH ’95, pp. 39-46, 1995.
    [18] K. Mueller, T. Mller, J.E. Swan, R. Crawfis, N. Shareef, and R. Yagel, “Splatting Errors and Antialiasing,” IEEE Trans. on Visualization and Computer Graphics, vol. 4, pp. 178-191, 1998.
    [19] M. M. Oliveha and G. Bishop, “Image-Based Objects,” Proceedings of 1999 ACM Symposium on Interactive 3D Graphics, (Atlanta, Georgia), April 26-28, 1999, pp. 191-198.
    [20] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. “Surfels - Surface Elements as Rendering Primitives,” SIGGRAPH '2000, pp. 335-342, 2000.
    [21] R. Pito, “A Solution to the Next Best View Problem for Automated Surface Acquisition,” IEEE Trans. on PAMI, Vol. 21, pp. 1016-1030, 1999.
    [22] V. Popescu, A. Lastra, D. Aliaga, and M. de Oliveira Neto. “Efficient Warping for Architectural Walkthroughs using Layered Depth Images.” In Proceedings of IEEE Visualization 98, pages 211-215, October 1998.
    [23] E. J. Purcell, D. Varberg, “CALCULUS with Analytic Geometry,” 5th ed., Prentice-Hall International, 1987, ISBN: 0131106023.
    [24] P. Rademacher and G. Bishop, “Multiple-Center-of-Projection images”, SIGGRAPH ’98, p.199-206, July 1998.
    [25] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point Rendering System for Large Meshes”, Proc. SIGGRAPH 2000, pp. 343-352, July 2000.
    [26] S. M. Seitz and C. R. Dyer, “View Morphing,” Proceedings of SIGGRAPH ’96, pp. 21-30, 1996.
    [27] J.Shade, S.Gortler, L.He, and R.Szeliski, “Layered Depth Images,” Proceedings of SIGGRAPH ’98, 231-242, 1998.
    [28] H.-Y. Shum and L.-W. He, “Rendering with Concentric Mosaics,” Proceedings of SIGGRAPH’99, pp. 299-306, 1999.
    [29] W. Stürzlinger, “Imaging all Visible Surfaces”, UNC Computer Science Technical Report TR98-010, University of North Carolina, March 1998.
    [30] R. Szeliski and H. Shum, “Creating Full view Panoramic Image Mosaics and Environment Maps”, SIGGRAPH ’97, p.251-258, August 1997.
    [31] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, Wolfgang Straßer, “The Randomized z-Buffer Algorithm: Interactive Rendering of Highly Complex Scenes,” SIGGRAPH 2001, pp. 361-370, 2001.
    [32] R. K. Wangsness, “Electromagnetic Fields,” Wiley, 1979, ISBN: 0471041033.
    [33] L. Westover, “Interactive Volume Rendering,” Proceedings of the Chapel Hill Workshop on Volume Visualization, Chapel Hill, NC, pp. 9-16, (May 1989).
    [34] L. Westover, “Footprint Evaluation for Volume Rendering,” Proceedings of Siggraph ’90, Vol. 24, 1990, pp. 367-376.
    [35] L. Williams, “Pyramidal Parametrics,” In Computer Graphics (SIGGRAPH’83 Proceedings), volume 17, pp. 1-11, July 1983.
    [36] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface Splatting,” SIGGRAPH 2001, pp. 371-378, 2001.
    [37] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “EWA Volume Splatting.” In Proceedings IEEE Visualization 2001, pages 29-36. Computer Society Press, 2001. 11.

    下載圖示 校內:2006-06-21公開
    校外:2007-06-21公開
    QR CODE