簡易檢索 / 詳目顯示

研究生: 李昀哲
Lee, Yun-Che
論文名稱: 測量七科蜘蛛的爪子形態及透過奈米壓痕技術比較跳蛛科和長腳蛛科的獠牙與爪子之機械性質以探討其潛在的生物功能
Measuring claw morphology of seven families in Araneae and comparing mechanical properties of fangs and claws between Salticidae and Tetragnathidae through nanoindentation to investigate their potential biological functions
指導教授: 邱慈暉
Chiou, Tsyr-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 61
中文關鍵詞: 蜘蛛角質層形態學機械性質奈米壓痕
外文關鍵詞: Araneae, cuticle, mechanical properties, morphology, nanoindentation
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 獠牙和爪子是蜘蛛捕食及在各類環境移動的重要工具,為了成功捕獲獵物和應對生活中會遇到的問題,這些工具應有一些型態及強度上的差異,但不同科蜘蛛的獠牙和爪子的形態及機械性質差異尚未有太多的研究。在本研究中,我們測量了7個科共24種蜘蛛4對腳上兩根爪子的形態數據,得到了爪長、弧度、梳狀構造的面積以及爪子的齒數。除此之外,我們還藉由奈米壓痕技術測量跳蛛科及長腳蛛科共10種物種的獠牙和爪子的機械性質,包含楊氏模量及硬度,並計算出抗磨度。在科間和科內,爪子的形態皆有所不同,如:非織網型蜘蛛的爪子會比織網型蜘蛛的爪子還長、兩爪蜘蛛的爪子會比三爪蜘蛛來的彎、沒有爪簇的非織網蜘蛛會有比較大面積的梳狀構造以及在一些科中的前腳爪子會比後腳爪子有更多的齒數,這些形態特徵或許和不同蜘蛛的不同爪子所提供的生態功能有所關聯。根據奈米壓痕測量的結果,我們發現獠牙的所有機械性質只在跳蛛科中會和身體大小呈線性相關,這或許暗示了跳蛛科比長腳蛛科更重視獠牙的強度,而棲息在人造建物的蜘蛛會比其他棲地的蜘蛛擁有更硬且耐磨的爪子,說明爪子的強度和蜘蛛的棲地類型有關。總結來說,我們對蜘蛛爪子的形態及機械性質、蜘蛛獠牙的機械性質進行研究,並發現了一些其與蜘蛛可能需要的生態功能的關聯,但完整的機制仍然需要後續的研究去發掘。

    Fangs and claws are the important tools of spiders for predation and navigating various environments. To successfully capture prey and cope with the challenges encountered in their habitats, these tools must exhibit certain morphological and mechanical variations. However, there is still limited research on the differences in the morphology and mechanical properties of fangs and claws among different spider families. In this study, we determined the morphology of eight claws from 24 species belonging to 7 families, including claw length, curvature, secondary teeth area and teeth amounts. Additionally, we measured the mechanical properties of fangs and claws of 10 species from Salticidae and Tetragnathidae. The morphological traits of claws were varied with and within families, such as wandering spiders had longer claws than web-building spiders, three-claw spiders had blunter claws than Dionycha spiders, wandering spiders without claw tufts had larger secondary teeth area than others, and claws on anterior legs had more teeth in some families. These morphological traits might relate to needed functions of each spider and claw. In mechanical study, properties of fangs were significantly affected by body size only in Salticidae, that the strength of fangs seemed to be more important in Salticidae compared to Tetragnathidae, while properties of claws were highest in which lived in artificial structures, which meant them were attributed to habitats a lot. Consequently, we found preliminary concepts about morphological and mechanical adaptation of spider’s claws, and mechanical adaptation of spider’s fangs, but further studies about the complete mechanisms of fangs and claws are needed.

    摘要 I Abstract II 誌謝 III Abbreviation IV List of Contents V List of Tables VI List of Figures VII 1. Introduction 1 2. Materials and Methods 4 2.1 Study subjects 4 2.2 Morphological study of claws 4 2.3 Mechanical studies of fangs and claws in Salticidae and Tetragnathidae 5 2.4 Statistics 5 3. Results 7 3.1 Morphometry 7 3.2 Mechanical property 8 3.2.1 Fang 8 3.2.2 Claw 9 4. Discussion 11 4.1 Claw morphology 11 4.1.1 Wandering spider 11 4.1.2 Web-building spider 13 4.2 Mechanical property 14 4.2.1 Fang 14 4.2.2 Claw 15 5. Conclusion 16 6. Reference 17 7. Table 22 8. Figure 27

    Arvidsson, F., Montes, M. S., & Birkhofer, K. (2022). Microhabitat conditions affect web-building spider communities and their prey independent of effects of short-term wildlife fencing on forest vegetation. The Journal of Arachnology, 50(3), 308-313. https://doi.org/10.1636/JoA-S-21-046
    Büsse, S., & Gorb, S. N. (2018). Material composition of the mouthpart cuticle in a damselfly larva (Insecta: Odonata) and its biomechanical significance. Royal Society Open Science, 5(6), 172117. https://doi.org/10.1098/rsos.172117
    Bar-On, B., Barth, F. G., Fratzl, P., & Politi, Y. (2014). Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4894
    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B., & Autumn, K. (2014). Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology, 117(6), 363-369. https://doi.org/10.1016/j.zool.2014.05.001
    Crews, S. C., Garcia, E. L., Spagna, J. C., Van Dam, M. H., & Esposito, L. A. (2019). The life aquatic with spiders (Araneae): repeated evolution of aquatic habitat association in Dictynidae and allied taxa. Zoological Journal of the Linnean Society, 189(3), 862-920. https://doi.org/10.1093/zoolinnean/zlz139
    Csermely, D., Rossi, O., & Nasi, F. (2012). Comparison of claw geometrical characteristics among birds of prey and non-raptorial birds. Italian Journal of Zoology, 79(3), 410-433. https://doi.org/10.1080/11250003.2012.663003
    Cutler, B. (1982). Extreme northern and southern distribution records for jumping spiders (Araneae, Salticidae) in the western hemisphere. Arctic, 426-428.
    Eberhard, W. G. (1986). Trail line manipulation as a character for higher level spider taxonomy. In W. G. Eberhard, Lubin, Y. D., and Robinson, B. C. (Ed.), Proceedings of the Ninth International Congress of Arachnology, Panama, 1983 (pp. 49-51). Smithsonian Institution Press.
    Eberhard, W. G. (2017). How orb-weavers find and grasp silk lines. Journal of Arachnology, 45(2), 145-151. https://doi.org/10.1636/JoA-S-16-057.1
    Eberhard, W. G., Barrantes, G., & Weng, J. (2006). The mystery of how spiders extract food without masticating prey. Bulletin-British Arachnological Society, 13(9), 372.
    Eberle, J., Dimitrov, D., Valdez-Mondragón, A., & Huber, B. A. (2018). Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology, 18(1). https://doi.org/10.1186/s12862-018-1244-8
    Evans, A. R., & Sanson, G. D. (2005). Biomechanical properties of insects in relation to insectivory: cuticle thickness as an indicator of insect ‘hardness’ and ‘intractability’. Australian Journal of Zoology, 53(1), 9-19. https://doi.org/10.1071/ZO04018
    Foelix, R. (2011). Biology of spiders. OUP USA.
    Gillespie, R. G. (1991). Predation through impalement of prey: The foraging behavior of Doryonychus raptor (Araneae, Tetragnathidae). Psyche: A Journal of Entomology, 98, 337-350.
    Gray, M. (1983). The male of Progradungula carraiensis Forster and Gray (Araneae, Gradungulidae) with observations on the web and prey capture. Proceedings of the Linnean Society of New South Wales,
    Greco, G., & Pugno, N. M. (2021). How spiders hunt heavy prey: the tangle web as a pulley and spider's lifting mechanics observed and quantified in the laboratory. Journal of The Royal Society Interface, 18(175), 20200907. https://doi.org/10.1098/rsif.2020.0907
    Hódar, J. A., & Sánchez-Piñero, F. (2002). Feeding habits of the blackwidow spider Latrodectus lilianae (Araneae: Theridiidae) in an arid zone of south-east Spain. Journal of Zoology, 257(1), 101-109. https://doi.org/10.1017/S0952836902000699
    Herberstein, M., & Elgar, M. (1994). Foraging strategies of Eriophora transmarina and Nephila plumipes (Araneae: Araneoidea): Nocturnal and diurnal orb‐weaving spiders. Australian Journal of Ecology, 19(4), 451-457.
    Herberstein, M. E. (1997). The effect of habitat structure on web height preference in three sympatric web-building spiders (Araneae, Linyphiidae). The Journal of Arachnology, 25(1), 93-96.
    Hill, D. E. (1977). The pretarsus of salticid spiders. Zoological Journal of the Linnean Society, 60(4), 319-338.
    Hill, D. E. (2010). Jumping spider feet (Araneae, Salticidae). Peckhamia, 85(1), 1-48.
    Kerschbaumer, M., & Pfingstl, T. (2024). Multiple factors influence claw characteristics in oribatid mites (Acari). Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58214-4
    Lease, H. M., & Wolf, B. O. (2010). Exoskeletal chitin scales isometrically with body size in terrestrial insects. Journal of Morphology, 271(6), 759-768. https://doi.org/10.1002/jmor.10835
    Michalik, P., Piacentini, L., Lipke, E., & Ramirez, M. (2013). The enigmatic Otway odd-clawed spider (Progradungula otwayensis Milledge, 1997, Gradungulidae, Araneae): Natural history, first description of the female and micro-computed tomography of the male palpal organ. ZooKeys, 335, 101-112. https://doi.org/10.3897/zookeys.335.6030
    Michalko, R., & Pekár, S. (2015). Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae). Ecological Entomology, 40(1), 22-33. https://doi.org/10.1111/een.12149
    Michalko, R., & Pekár, S. (2016). Different hunting strategies of generalist predators result in functional differences. Oecologia, 181(4), 1187-1197. https://doi.org/10.1007/s00442-016-3631-4
    Miyashita, T., & Niwa, S. (2006). A test for top-down cascade in a detritus-based food web by litter-dwelling web spiders. Ecological Research, 21(4), 611-615. https://doi.org/10.1007/s11284-006-0155-0
    Murakami, Y. (1983). Factors determining the prey size of the orb-web spider, Argiope amoena (L. Koch) (Argiopidae). Oecologia, 57(1-2), 72-77. https://doi.org/10.1007/bf00379564
    Nentwig, W. (2013). Spider ecophysiology. Springer Science & Business Media.
    Nentwig, W., Ansorg, J., Bolzern, A., Frick, H., Ganske, A.-S., Hänggi, A., Kropf, C., & Stäubli, A. (2022). All You Need to Know About Spiders. Springer Nature.
    Nentwig, W., & Wissel, C. (1986). A comparison of prey lengths among spiders. Oecologia, 68(4), 595-600. https://doi.org/10.1007/bf00378777
    Neville, A. C. (2012). Biology of the arthropod cuticle (Vol. 4). Springer Science & Business Media.
    Nyffeler, M. (1999). Prey selection of spiders in the field. Journal of Arachnology, 317-324.
    Petie, R., & Muller, M. (2007). Curvature facilitates prey fixation in predatory insect claws. Journal of theoretical biology, 244(4), 565-575. https://doi.org/10.1016/j.jtbi.2006.09.004
    Pfingstl, T., Kerschbaumer, M., & Shimano, S. (2020). Get a grip—evolution of claw shape in relation to microhabitat use in intertidal arthropods (Acari, Oribatida). PeerJ, 8, e8488. https://doi.org/10.7717/peerj.8488
    Platnick, N. I. (1976). Notes on the spider genus Doliomulus (Araneae, Gnaphosoidea). Revue de zoologie africaine.
    Residori, S., Greco, G., & Pugno, N. M. (2022). The mechanical characterization of the legs, fangs, and prosoma in the spider Harpactira curvipes (Pocock 1897). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-16307-y
    Sanders, D., & Platner, C. (2007). Intraguild interactions between spiders and ants and top-down control in a grassland food web. Oecologia, 150(4), 611-624. https://doi.org/10.1007/s00442-006-0538-5
    Sanders, D., Vogel, E., & Knop, E. (2015). Individual and species-specific traits explain niche size and functional role in spiders as generalist predators. Journal of Animal Ecology, 84(1), 134-142. https://doi.org/10.1111/1365-2656.12271
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
    Schofield, R. M. S., Bailey, J., Coon, J. J., Devaraj, A., Garrett, R. W., Goggans, M. S., Hebner, M. G., Lee, B. S., Lee, D., Lovern, N., Ober-Singleton, S., Saephan, N., Seagal, V. R., Silver, D. M., Som, H. E., Twitchell, J., Wang, X., Zima, J. S., & Nesson, M. H. (2021). The homogenous alternative to biomineralization: Zn- and Mn-rich materials enable sharp organismal “tools” that reduce force requirements. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91795-y
    Selden, P. A. (2017). Arachnids. In Reference Module in Life Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809633-8.02243-3
    Seymour, R. S., & Hetz, S. K. (2011). The diving bell and the spider: the physical gill of Argyroneta aquatica. Journal of Experimental Biology, 214(13), 2175-2181. https://doi.org/10.1242/jeb.056093
    Team, R. C. (2024). R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing. https://www.R-project.org/
    Tsui, T. Y., Pharr, G. M., Oliver, W. C., Bhatia, C. S., White, R. L., Anders, S., Anders, A., & Brown, I. G. (1995). Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks. MRS Proceedings, 383. https://doi.org/10.1557/proc-383-447
    Viera, C., & Gonzaga, M. O. (2017). Behaviour and Ecology of Spiders. Contributions from the Neotropical Region. Switzerland: Springer.
    Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C., & Lin, C.-P. (2018). Too hard to swallow: a secret secondary defence of an aposematic insect. Journal of Experimental Biology, 221(2), jeb172486. https://doi.org/10.1242/jeb.172486
    Welch, K. D., Haynes, K. F., & Harwood, J. D. (2013). Prey-specific foraging tactics in a web-building spider. Agricultural and Forest Entomology, 15(4), 375-381. https://doi.org/10.1111/afe.12023
    Wolff, J. O., & Gorb, S. N. (2012). Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Journal of Experimental Biology, 215(Pt 1), 179-184. https://doi.org/10.1242/jeb.061507
    Wolff, J. O., & Gorb, S. N. (2016). Mechanical Attachment Devices. In (pp. 25-52). Springer International Publishing. https://doi.org/10.1007/978-3-319-45713-0_2

    無法下載圖示 校內:2029-08-16公開
    校外:2029-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE