簡易檢索 / 詳目顯示

研究生: 孫瑩琁
Sun, Ying-Shuan
論文名稱: 以BIM為基礎建構符合施工度的排程評估模式
Developing the BIM-based scheduling evaluation model according to the constructibility analysis
指導教授: 馮重偉
PING, JHONG-WEI
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: BIMMEP施工度
外文關鍵詞: BIM, MEP, Constructability
相關次數: 點閱:89下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著建築工程日趨龐大及對使用環境需求之擴大,建築工程中機電系統(MEP─Mechanical, Electrical, and Plumbing systems)所佔的比例已逐漸增加,也日趨複雜。但由於機電系統之興建,常依附著其它建築工項,多數情況下是必須配合著其它工程興建完成或先進行一部份之後,機電系統才得以進行,因此機電系統之施工時間與施工空間常常已被不合理的壓縮,使得施工衝突以及變更設計發生情況頻繁,進而影響著整個建築專案之完工時間、成本與施工品質。此外,由於機電系統之工程細項繁雜,且其施工順序的安排常須與其他建築工項配合,如果不能完善規劃其施工順序,往往會影響整個專案施工的進行。因此如何有效整合機電系統與建築工項於施工中,並落實於排程界面上,便顯得相當重要。
    現今BIM(Building Information Model)技術發展已可以涵蓋建築物於生命週期中的各式資訊,雖然施工圖中機電系統元件與建築系統元件之介面已經能夠完整呈現於BIM中,並於機電設備系統施工元件中加入完整的元件屬性,但目前的BIM仍未能完整的與專案排程作結合,許多專案排程中隱藏著無法自動偵測出來之非實體衝突,例如機電系統與建築工項在施作空間,多半著重於工程結束後或是仍尚在施工中時之情況下會遭遇到的元件衝突,而非工作空間或共享資源利用之非實體衝突。因此如何使BIM建築資訊模型發展更加完善,讓機電系統元件施工界面與結構建築系統之施工項目充分結合,以建構一符合建築專案施工度之排程,是目前仍需研究之課題。
    因此,本研究以施工度(Constructability)角度探討(1)機電系統與建築系統工程項目之各種影響MEP機電系統施工度之因素;(2)了解機電設備間,機電系統與土木建築工程的施工界面衝突影響因素對整體施工工程之影響程度;(3)針對機電與土建施工中產生的各種衝突,建立施工度評估系統,找出並安排符合施工度之專案排程。

    As the building developed to provide more comfortable living environment, the MEP system within the construction project becomes more complex and larger in scale. However, the MEP system typically contains a huge amount of components from various types. In addition, the construction of the MEP system usually needs to cope with the operations of various trades within the construction projects. Therefore, it is not an easy task to develop a schedule for the MEP contractors to efficiently and effectively manage the project. Currently with the help of the BIM (Building Information Modeling) technology, the information of the components within the MEP system can be easily stored and retrieved. Consequently, the schedule of assembling the MEP system can be more efficiently and effectively arranged.
    This thesis employs the information of the BIM components within the MEP system to develop the evaluation system for the project schedule according to constructability. The following steps are performed accordingly (1) find the factors that impact the constructability of assembling the MEP system (2) understand the impact on the overall construction project in terms of time (3) develop the evaluation system for the project schedule according to constructability.

    摘要................................................I Abstract ...........................................II 致謝...............................................III 目錄................................................IV 圖目錄.............................................VIII 表目錄...............................................X 第一章 緒論...........................................1 1.1 研究背景與動機 ....................................1 1.2 研究目的.........................................2 1.3 研究範圍.........................................4 1.4 研究方法與流程 ....................................6 1.5 論文內容與架構 ....................................8 第二章 研究問題陳述與文獻回顧...........................9 2.1 研究問題陳述......................................9 2.2 文獻回顧.........................................10 2.2.1 BIM之發展......................................10 2.2.2 BIM之效益......................................11 2.2.3 BIM元件內嵌施工之屬性發展........................13 2.2.3.1 機電系統介紹..................................13 2.2.3.2 機電元件層級..................................14 2.2.3.3 機電元件施工屬性..............................15 2.2.4空間衝突........................................18 2.2.5 MEP機電系統施工排序.............................19 2.2.5.1 機電工程之特性................................20 2.2.5.2 MEP施工要項及順序.............................22 2.3 小結 ............................................24 第三章 影響MEP機電系統之施工度的因素.....................25 3.1施工度之定義.......................................25 3.2 評定之因素與標準...................................25 3.2.1 空間...........................................26 3.2.2 時間...........................................31 3.2.3 管別...........................................36 3.2.4 管路...........................................38 第四章 MEP施工度評估系統...............................39 4.1 評估表格制定......................................39 4.1.1 水平管路.......................................40 4.1.1.1 施工考量-(A)穿牆管之套管預埋 ...................40 4.1.1.2 施工考量-(B)穿牆管之開孔預留...................45 4.1.1.3 施工考量-(C)穿牆管之輕隔間封版順序..............47 4.1.1.4 施工考量-(D)穿梁管之套管預埋 ...................53 4.1.1.5 施工考量-(E)樑下管之水平管路施作順序............56 4.1.1.6 施工考量-(F)樓板預埋管之板筋組立順序............60 4.1.2 垂直管路.......................................64 4.1.2.1. 施工考量-(G)管道間立管之管道間封牆順序..........64 4.1.2.2. 施工考量-(H)穿版立管之套管預埋.................70 4.1.2.3. 施工考量-(I)輕隔間立管之輕隔間封版順序..........73 4.1.2.4. 施工考量-(J)RC柱預埋管之柱筋組立順序............78 4.2 空間因素運算式 ....................................81 4.3 時間因素運算式 ....................................88 第五章 MEP機電系統3D模型案例分析........................94 5.1 案例分析-成功大學第二新建醫院.......................94 5.1.1 案例背景........................................94 5.1.2 案例第八層機電系統模型............................94 5.2 案例計算:.........................................97 5.2.1 施工考量:A .....................................97 5.2.2 施工考量:B .....................................99 5.2.3 施工考量:C ....................................100 5.2.4 施工考量:E ....................................101 5.2.5 施工考量:H ....................................113 5.2.6 施工考量:I ....................................116 5.3 案例分析..........................................117 5.3.1 施工考量分析:A..................................117 5.3.2 施工考量分析:B..................................119 5.3.3 施工考量分析:C..................................119 5.3.4 施工考量分析:E..................................120 5.3.5 施工考量分析:H..................................121 5.3.6 施工考量分析:I..................................122 5.4 小結..............................................122 第六章 結論與建議.......................................123 6.1 結論..............................................123 6.2 未來研究方向與建議..................................125 參考文獻...............................................126 附錄 A.................................................130 自述...................................................142

    英文部分
    [1]Burcu, Akinci., Martin, Fischer., and Todd, Zabelle., “Proactive Approach For Reducing Non-Value Adding Activities Due To Time-Space Conflicts”, Proceedings IGLC, Stanford University, CA, Guaruja, Brazil (1998).
    [2]Atul, Khanzode., Martin, Fischer., and Dean, Reed., “Benefits And Lessons Learned Of Implementing Building Virtual Design And Construction (Vdc) Technologies For Coordination Of Mechanical, Electrical, And Plumbing (Mep) Systems On A Large Healthcare Project”, Stanford University, Stanford, CA, USA, (2008).
    [3]Salman, Azhar., Abid, Nadeem., Johnny, Y. N. Mok., and Brian, H. Y. Leung., “Building Information Modeling (BIM): A New Paradigm for Visual Interactive Modeling and Simulation for Construction Projects”, Advancing and Integrating Construction Education, Research & Practice, August 4-5, Karachi, Pakistan, (2008).
    [4]Daniel, P. Rosário., and Octávio, P. Martins., “3D and VR models in Civil Engineering education: Construction, rehabilitation and maintenance”, journal of Automation in Construction 19, 819–828, (2010).
    [5]Fernanda, Leite., Asli, Akcamete., Burcu, Akinci., Guzide, Atasoy., and Semiha, Kiziltas., “Analysis of modeling effort and impact of different levels of detail in building information models”, journal of Automation in Construction, (2010).
    [6]David, K.H. Chua., and Yuanbin, Song., “Application of component state model for identifying constructability conflicts in a merged construction schedule”, Advances in Engineering Software, 34, 671–681, (2003).
    [7]Patrick, T.I. Lam., Franky, W.H. Wong., and Albert, P.C. Chan., “Contributions of designers to improving buildability and constructability”, Design Studies, Volume 27, Issue 4, Pages 457-479, July, (2006).
    [8]O. O. Ugwu., C. J. Anumba., and A. Thorpe., “The development of cognitive models for constructability assessment in steel frame structures”, Advances in Engineering Software, Volume 35, Issues 3-4, March, Pages 191-203, (2004).
    [9]Ashwin, Mahalingam., Rahul, Kashyap., and Charudatta, Mahajan., “An evaluation of the applicability of 4D CAD on construction projects”, Automation in Construction, Volume 19, Issue 2, March, Pages 148-159, (2010).
    [10]John, Haymaker., John, Kunz., Ben, Suter., and Martin, Fischer. “Perspectors: composable, reusable reasoning modules to construct an engineering view from other engineering views”, Advanced Engineering Informatics, Volume 18, Issue 1, January, Pages 49-67, (2004).
    [11]Xueqing, Zhang., Xiaoming, Mao., and Simaan, M. AbouRizk., “Developing a knowledge management system for improved value engineering practices in the construction industry”, Automation in Construction, Volume 18, Issue 6, October, Pages 777-789, (2009).
    [12]António, Grilo., and Ricardo, Jardim-Goncalves., “Value proposition on interoperability of BIM and collaborative working environments”, Automation in Construction, Volume 19, Issue 5, August, Pages 522-530, (2010).
    [13]Peter, E. D. Love., and Zahir, Irani., “A project management quality cost information system for the construction industry”, Information & Management, Volume 40, Issue 7, August, Pages 649-661, (2003).
    [14]Heng, Li., Neo, Chan., Ting, Huang., H.L. Guo., Weisheng, Lu., and Martin, Skitmore., “Optimizing construction planning schedules by virtual prototyping enabled resource analysis”, Automation in Construction, Volume 18, Issue 7, November, Pages 912-918, (2009).
    [15]Sheryl, Staub-French., and Madhav, Prasad, Nepal., “Reasoning about component similarity in building product models from the construction perspective”, Automation in Construction, Volume 17, Issue 1, November, Pages 11-21, (2007).
    [16]N. Young., S. Jones., H. Bernstein., and J. Gudgel., “The Business Value of BIM: getting Building Information Modeling to the bottom line”, The McGraw-Hill Companies, New York, 2009, p. 528, (2010).
    [17]Z. Shen., and R. Issa., “Quantitative evaluation of the BIM assisted construction detailed cost estimates”, ITCON 15 ,234–257, (2010).
    [18]R. Manning., and J. Messner., “Case studies in BIM implementation for programming of healthcare facilities”, ITCON 13 446–457, (2008).
    中文部分
    [1]李冠文,「建構符合機電包商施工需求之3D繪圖元件模型之研究」,國立成功大學土木工程研究所,碩士論文,2009。
    [2]仲闓立,「以space syntax(空間語法)分析施工要徑空間特性之研究」,國立臺灣大學土木工程研究所,碩士論文,2006。
    [3]張峻誠,「以空間語法分析空間衝突之研究—以逆打工法為例」,國立臺灣大學土木工程研究所,碩士論文,2005。
    [4]張怡然,「利用空間語法考慮影響使用者時間之維護更新工程進度規劃模式」,國立交通大學土木工程研究所,碩士論文,2008。
    [5]郭斯傑,「建築工程中機電設備施工排序之探討」,中華民國建築學會「建築學報」第45期,PP.121–141,2004。
    [6]詹慕祖,「機電工程變更設計對工期的影響」,國立臺灣大學土木工程研究所,碩士論文,2000。
    [7]戴期甦、陳曉晴、郭斯傑,「建築工程機電系統施工界面整合之探討」,建築學報,2007。

    下載圖示 校內:立即公開
    校外:2012-02-21公開
    QR CODE