簡易檢索 / 詳目顯示

研究生: 劉家銘
Liou, Jia-Ming
論文名稱: 鐵酸鉍-鈷鐵氧體柱狀奈米結構的介面傳導特性
Interface conduction in BiFeO3-CoFe2O4 pillared nanostructures
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化物鐵酸鉍鈷鐵氧體導電機制介面
外文關鍵詞: oxide, BiFeO3, CoFe2O4, conduction mechanism, interface
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化物的導電機制以及氧化物複合材料之間介面的特殊物理性質是近年來炙手可熱的研究議題。本研究針對鐵酸鉍(BiFeO3)和鈷鐵氧體(CoFe2O4)複合式材料探討比較其介面的導電機制,使用導電式原子力顯微鏡(conductive-Atomic Force Microscopy)觀察微觀結構下的電流分布以及定點電流-電壓關係,並使用顯微拉曼及光激發光譜儀量測螢光光譜獲得缺陷能級來分析其導電機制。量測結果顯示於鐵酸鉍和鈷鐵氧體介面處具有不同於鐵酸鉍與鈷鐵氧體本身的導電性質,並且可藉由外加磁場、照雷射光、施加電壓等操控手法改變其導電性質,再輔以螢光光譜得到樣品缺陷能級的變化,探討樣品介面特殊導電性的可能機制。

    The special feature of the interface between the oxide composite materials and conduction at the interface had attracted great interests in recent years. In this study, we investigated the conductivity mechanism in magneto-electric nano-composites composed of multiferroic BiFeO3 (BFO) and ferrite CoFe2O4 (CFO). By using conductive atomic force microscopy (c-AFM), the current distribution and the barrier for carrier transportation were analyzed. Meanwhile, the defect levels were observed by using photoluminescence spectrum. The results show that the BFO-CFO interface is more conductive than the matrices, and the conduction states are affected by external magnetic fields, irradiated laser light, and applied voltages. The conduction mechanism at the interface is thus discussed by measuring the variation of photoluminescence, which shows changes in defect levels, under different external parameters.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第二章 文獻回顧 3 2.1 氧化物複合材料的介面特性 3 2.1.1 LaAiO3-SrTiO3 5 2.1.2 YBa2Cu3O7-La2/3Ca1/3MnO3 9 2.1.3 BiFeO3-La0.7Sr0.3MnO3 10 2.2 BiFeO3-CoFe2O4複合材料特性 12 2.3 絕緣體載子傳輸機制 15 2.3.1 直接穿隧[9] 16 2.3.2 福勒-諾德漢穿隧(F-N穿隧)[10] 17 2.3.3 蕭基發射(SE發射)[10,11] 18 2.3.4 普爾-法蘭克發射(P-F發射)[14] 20 2.3.5 空間電荷限制電流(SCL)[15-19] 21 第三章 實驗原理與方法 28 3.1 掃描式探針顯微鏡 28 3.1.1 掃描式探針顯微鏡的原理與架構 28 3.1.2 原子力顯微鏡之系統架構 29 3.1.3 原子力顯微鏡之成像原理 30 3.1.4 導電式原子力顯微鏡(c-AFM) 35 3.2 光子激發光譜儀(PL)[25] 36 第四章 實驗結果與討論 39 4.1 BFO-CFO介面的導電特性 40 4.1.1 BFO-CFO複合材料的導電性分佈 40 4.1.2 BFO-CFO介面傳輸機制-小電壓 44 4.1.3 BFO-CFO介面傳輸機制-大電壓 50 4.2 缺陷對導電特性的影響 56 4.2.1 照光影響的導電特性 59 4.2.2 磁場影響的導電特性 69 4.2.3 加電壓影響的導電特性 74 第五章 結論 80 參考資料 82

    參考資料

    1 Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W., Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1492-1495 (2006).
    2 Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423-426 (2004).
    3 N. Reyren, S. Thiel, A. D. Caviglia.Superconducting interfaces between insulating oxides. Science 317, 1196-1199 (2007).
    4 A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben. Magnetic effects at the interface between non-magnetic oxide. Nature Materials 6,493-496 (2007).
    5 Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244 - 248 (2006).
    6 Yu, P. et al. Interface Ferromagnetism and Orbital Reconstruction in BiFeO3- La0.7 Sr0.3 MnO3 Heterostructures. Phys. Rev. Lett. 105, 027201 (2010).
    7 Zheng, H., Zhan, Q., Zavaliche, F., Sherburne, M., Straub, F., Cruz,M. P., Chen, L. Q., Dahmen, U., Ramesh, R. Controlling Self-Assembled Perovskite-Spinel Nanostructures. Nano Lett. 6, 1401–1407 (2006).
    8 Sheng-Chieh Liao. Misorientation Control and Functionality Design of Nanopillars in Self-Assembled Perovskite-Spinel Heteroepitaxial Nanostructures. ACS nano. 5, 4118-4122 (2011).
    9 A. Schenk and G. Heiser.Modeling and Simulation of Tunneling through Ultra-thin Gate Dielectric. J. Appl. Phys. 81, No.12, p.7900 (1997).
    10 R. H. Flower, L. Nordheim, Proc. R. Soc. Electron Emission in Intense Electric Fields. London, Ser. A119, p. 173 (1928).
    11 劉恩科,朱秉升,羅晉升,嚴考豐.半導體物理學,新文京開發出版股份有限公司 (2006).
    12 J. G. Simmons. Richardson-Schottky effect in solids. Phys. Rev. Lett. 15, 25 (1965).
    13 C.-H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh. Conduction at domain walls in oxide multiferroics. Nature Materials 8,485-493 (2009).
    14 J. G. Simmons. Generalized formula for the electric tunneling effect between silicon electrodes separated by a thin insulating film. J. Appl. Phys. 34,No. 6 (1963).
    15 K. K. Ng. Complete Guide To Semiconductor Devices, 2nd Edition, John Wiley & Sons, New York (2002).
    16 M. A. Lampert, P. Mark. Current Injection in Solids. Academic Press, New York (1970).
    17 F.Bloch. Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik, 52, pp. 555-600 (1928).
    18 N. F. Mott, R. W. Gurney. Electronic Processes in Ionic Crystals, Oxford University Press. London and New York (1940).
    19 A. Rose. Space-Charge-Limited Currents in Solids. Physical Review, Vol. 97, No. 6, pp. 1538 – 1544, March (1955).
    20 陳力俊,材料電子顯微鏡學,行政院國家科學委員會精密儀器發展中心 (2003).
    21 Sergei N. Magonov, Myung-Hwan Whangbo. Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis. New York VCH (1996).
    22 Morris, V. J., Kirby, A. R., Gunning, A. P. . Atomic Force Microscopy for Biologists. Imperial College Press: London, (1999).
    23 R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt. Surface and domain structures of ferroelectric crystals studied with scanning force microscopy. J. Appl. Phys., 74, 12 (1993).
    24 M. Alexe and A. Gruverman. Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach. Springer, (2004).
    25 汪建銘,材料分析,中國材料科學學會 (1998).
    26 Jill Guyonnet. Conduction at Domain Wall in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films. Adv. Mater.,XX,1-6 (2011).
    27 S. Farokhipoor and B. Noheda. Conduction through 710 Domain Walls in BiFeO3 Thin Films. PRL 107, 127601 (2011).
    28 Yao Shuai, Shengqiang Zhou, Heidemarie Schmidt. Nonvolatile bipolar resistive switching in Au/BifeO3/Pt. J. Appl. Phys. 109, 124117 (2011).
    29 P. Zubko, D. J. Jung, J. F. Scott. Electrical characterization of PbZr0.4Ti0.6O3 capacitors. J. Appl. Phys. 100, 114113 (2006).
    30 Can Wang, Kui-juan Jin. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin film. Appl. Phys. Lett. 98, 192901 (2011).
    31 A. Rose. Space-Charge-Limited Currents in Solids. Physical Review, 97, 6 (1955).

    下載圖示 校內:2014-08-09公開
    校外:2014-08-09公開
    QR CODE