| 研究生: |
陳佳君 Chen, Chia-Chun |
|---|---|
| 論文名稱: |
戶外觀光活動熱舒適性研究-以台南孔廟園區為例 Outdoor thermal comfort of tourism activity in Tainan Confucius Temple Area |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 觀光 、熱舒適 、天空可視率 、不同座向遮蔽 、平均輻射溫度 |
| 外文關鍵詞: | Tourism, Thermal comfort, Sky View Factor, Different shades, Mean radiant temperature |
| 相關次數: | 點閱:113 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化加劇,溫度不斷升高,使得在戶外的活動變得十分不適。而又因為都市的高使用率,使得熱量容易累積,高溫現象更為頻繁,因此,戶外空間的熱舒適議題顯得更為重要。過去研究多探討不同單點的天空可視率與溫度之比較,但少有探討一整個區域的溫度變化,但戶外的各種活動,如觀光、遊憩等的範圍不僅侷限於一個單點,而是與整個區域相關。
故本研究參考台南市政府的觀光文宣,選定政府建議之觀光路線作為熱舒適分析的區域,利用三個時段的移動實測,探討整體路線於不同天空可視率之溫度變化,並且進行問卷發放,調查不同區域、不同年齡層的遊客對於觀光區域的熱感知程度,期盼能作為日後都市觀光導覽的建議與改善。
研究結果發現,空氣溫度與天空可視率相關,而若涉及平均輻射溫度,南向天空可視率SVFS能夠代表天空遮蔽現象;而在傳統的街道中,開口向南的街道因為整日接收日射較多,在有無植栽差異下的空氣溫度差異約2.5ºC左右,但是以平均輻射溫度而言,則溫差可高達10ºC左右,比起其他類型的街道更加需要植栽或其他遮蔽物來抵擋日射;而在整體觀光路線的規劃方面,由於不同的街廓類型所能抵擋日射的時間不同,因此觀光路線應配合時間做一有時間性的規劃。
在問卷方面,最多遊客選擇找遮陽處來調適熱不適,而大約65%的遊客覺得增加植樹能提高前來意願,另外,在進行問卷與實測結果的比較後,發現溫度的高低確實造成遊客的感之差異,有改善需求,其中又以北遮蔽街道的為最優先改善的區域。
As global warming intensifies, activities of outdoor space become very uncomfortable. Therefore, the thermal comfort issue of outdoor space is more important. In the past, the study explored the comparison of the Sky View Factor and temperature of different single points, but rarely discussed the temperature change of an entire area, but the range of outdoor activities, such as tourism, is not limited to a single point.
Therefore, this study selects the tourism route recommended by the government as analysis area, and measures the temperature changes with three different times by mobile measurement. This study also conducts questionnaires of tourists with different regions and different ages.
This study found, the air temperature is related to the Sky View Factor, and the mean radiant temperature is related to SVFS. In terms of questionnaires, most tourists choose to find shades to adjust for thermal discomfort, and about 65% of tourists think that increasing vegetation can increase their willingness to come. In addition, after comparing the questionnaire with the measured results, it is found that the temperature does cause difference in feelings to tourists. Thus, there is an improvement in demand, and in the streets with opening southward is the most important area for improvement.
1. Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13(3-4), 373-384.
2. Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., & He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime intra‐urban air temperature differentials in high‐rise, high‐density urban areas of Hong Kong: a GIS‐based simulation approach. International Journal of Climatology, 32(1), 121-136.
3. Häb, K., Ruddell, B. L., & Middel, A. (2015). Sensor lag correction for mobile urban microclimate measurements. Urban Climate, 14, 622-635.
4. Heusinkveld, B. G., Van Hove, L. W. A., Jacobs, C. M. J., Steeneveld, G. J., Elbers, J. A., Moors, E. J., & Holtslag, A. A. M. (2010). Use of a mobile platform for assessing urban heat stress in Rotterdam. In Proceedings of the 7th Conference on Biometeorology (Vol. 20, pp. 433-438).
5. Hwang, R. L., Lin, T. P., & Matzarakis, A. (2011). Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and Environment, 46(4), 863-870.
6. ISO, ISO 7726: Thermal environments—Instruments and methods for measuring physical quantities: International Organization for Standardization, 1985
7. Kilbourne, E. M. (1997). Heat waves and hot environments. The public health consequences of disasters, 245-269.
8. Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., & Hyatt, O. (2016). Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annual review of public health, 37, 97-112.
9. Kotharkar, R., & Surawar, M. (2015). Land use, land cover, and population density impact on the formation of canopy urban heat islands through traverse survey in the Nagpur urban area, India. Journal of Urban Planning and Development, 142(1), 04015003.
10. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290.
11. Nakayoshi, M., Kanda, M., Shi, R., & de Dear, R. (2015). Outdoor thermal physiology along human pathways: a study using a wearable measurement system. International journal of biometeorology, 59(5), 503-515.
12. Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar energy, 70(3), 227-235.
13. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
14. Scott, D., & McBoyle, G. (2001, December). Using a ‘tourism climate index’to examine the implications of climate change for climate as a tourism resource. In Proceedings of the first international workshop on climate, tourism and recreation (pp. 69-88). International Society of Biometeorology, Commission on Climate, Tourism and Recreation Freiburg, Germany.
15. Solomon, S. (Ed.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.
16. 林憲德. (2009)。人居熱環境。臺北=Taipei, Taiwan:詹氏書局=Zhan Shi Book Company
17. 李詩涵. (2014). 都市開放空間使用者之微氣候經驗與認知.
18. 陳雅姿. (2014). 景觀植栽遮蔽性與舒適度之研究. 中興大學景觀與遊憩碩士學位學程學位論文, 1-105.
19. 黃心瑤. (2014). 亞熱帶騎樓建築風環境影響之研究. 臺北科技大學建築與都市設計研究所學位論文, 1-103.
20. 黃英哲. (2011). 公園之遮蔽程度及熱環境對民眾參與行為之影響. 虎尾科技大學休閒遊憩研究所學位論文, 1-125.
21. 楊馨茹. (2018). 社區戶外熱環境評估及調適策略. 成功大學建築學系學位論文, 1-105.
22. 劉怡欣. (2010). 夏季都市步行空間陰影設計與評估-以台南中正商圈為例. 成功大學都市計劃學系學位論文, 1-82.
23. 謝俊民, 劉怡欣, & 戴婷婷. (2012). 人行步道空間的陰影連續性設計與熱舒適評價. 都市與計劃, 39(4), 407-429.