| 研究生: |
陳瑜庭 Chen, Yu-Ting |
|---|---|
| 論文名稱: |
探討MOZ在停滯複製叉上的功能 The function of MOZ at stalled replication forks |
| 指導教授: |
廖泓鈞
Liaw, Hung-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | MOZ 、化學抗性 、姊妹染色單體交換 、范可尼貧血修復路徑 、同源重組修復路徑 、模板交換路徑 、複製叉 |
| 外文關鍵詞: | MOZ, chemoresistant, sister chromatid exchange, Fanconi anemia pathway, homologous recombination pathway, template switching pathway, replication forks |
| 相關次數: | 點閱:113 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今利用順鉑進行慢性治療在癌症細胞中產生化學抗性,這已成為癌症治療上主要的障礙。順鉑引起鹼基之間的股間交連作用(interstrand cross-links, ICLs)。在哺乳動物細胞中,主要是由范可尼貧血修復路徑(Faconi anemia, FA)以及同源重組修復路徑(Homologous recombination, HR)修補ICLs。MOZ屬於MYST家族組蛋白乙醯轉移酶其中一員,參與特定基因轉錄調控、DNA修復以及複製。在這項研究中,我們發現MOZ在具有順鉑抗藥性的鼻咽癌細胞株(chemoresistant nasopharyngeal carcinoma cells, NPC)HONE6細胞與其親代HONE1細胞相比有過度表現的情況。此外,我們利用 CRISPR-Cas9降低HONE6細胞中MOZ表現量,進而產生了MOZ haploinsufficient細胞株。本篇研究發現,在MOZ haploinsufficient細胞中,參與在HR以及FA修復路徑中關鍵蛋白BRCA1、BRCA2以及FANCD2的表現量有降低的趨勢,並降低姊妹染色單體交換(Sister chromatid exchange, SCE)的頻率。細胞利用HR進行DNA斷裂末端修復進而產生SCE,在 MOZ haploinsufficient細胞中SCE的交換頻率大幅降低,這支持MOZ促進FA以及HR修復路徑的觀點。此外,複製後修復(Post-replication repair, PRR)中的模板交換路徑(Template switching, TS),在沒有DNA損傷處理下例如:甲磺酸甲酯(methyl methamesulfonate, MMS),MOZ haploinsufficient細胞中,stalled forks的數量增加以及複製軌道的長度有縮短的趨勢,此結果顯示MOZ參與並影響複製叉的進展。反之,在MMS存在的情況下,MOZ haploinsufficient細胞中,stalled forks的數量的大幅增加以及複製軌道的長度大幅縮短的趨勢。UBC13主要參與PRR修復路徑中的TS路徑,研究發現,MOZ會調節UBC13表現量,由此結果可知MOZ會參與在TS路徑。為了證明此結果,我們利用iPOND分析MOZ與複製叉的關聯性。在MMS處理的情況下,MOZ以及H3ac在stalled forks上有累積的情況。總結以上結果推測,MOZ不僅參與FA以及HR路徑,也參與TS路徑。MOZ的過度表現並調控參與FA、HR以及TS路經中蛋白的表現量進而造成抗藥性。
Chronic treatment with cisplatin can cause a chemoresistant phenotype of cancer cells, which has become a major obstacle to treatment efficacy. Cisplatin causes the interstrand cross-links (ICLs) between bases. The Fanconi anemia (FA) pathway combined with the homologous recombination (HR) pathway is the major pathway for the repair of these ICLs in mammalian cells. MOZ belongs to the MYST family of histone acetytranferases and is involved in gene specific transcription regulation, DNA repair, and replication. In this study, we found that MOZ is overexpressed in the chemoresistant nasopharyngeal carcinoma cells (NPC), HONE6 cells, as compared to its parental HONE1 cells. Additionally, we have generated the MOZ haploinsufficient HONE6 cells by using the CRISPR-Cas9 gene deletion strategy. Here, we showed that the MOZ haploinsufficient cells reduced the expression of BRCA1, BRCA2, and FANCD2, which are involved in the HR and FA pathways, and reduced the frequency of sister chromatid exchanges (SCEs). Because SCE is the result of repairing DNA broken ends by the HR pathway, the reduced SCE in the MOZ haploinsufficient HONE6 cells support the notion that MOZ facilitates the FA and HR pathways. Furthermore, in the templating switching (TS) pathway of the post-replication repair (PRR) pathway, the MOZ haploinsufficient cells showed reduced replication tracks, concomitantly with an increased number of stalled forks in the absence of DNA damaging treatment, e.g. methyl methamesulfonate (MMS), indicating that MOZ is involved in the progression of replication forks. In the presence of MMS, the track length is further reduced, and the number of stalled forks is further increased in the MOZ haploinsufficient cells. Since MOZ also regulates the expression of UBC13, involved in the TS pathway of the PRR pathway, our results suggest that MOZ participates in the TS pathway. In support of this notion, MOZ is associated with replication forks by using the iPOND assay. In the presence of MMS, MOZ and H3ac accumulated at a stalled fork. Taken together, our results suggest that MOZ is not only involved in the FA and HR pathways, but also participates in the TS pathway. Overexpression of MOZ could contribute to the chemoresistance by upregulation of the FA, HR and TS pathways.
1. Giglia-Mari, G., Zotter, A. & Vermeulen, W. DNA damage response. Cold Spring Harb Perspect Biol 3, a000745 (2011).
2. Torgovnick, A. & Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front Genet 6, 157 (2015).
3. Goldstein, M. & Kastan, M.B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66, 129-43 (2015).
4. Li, X. & Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99-113 (2008).
5. Chen, J.J., Silver, D., Cantor, S., Livingston, D.M. & Scully, R. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res 59, 1752s-1756s (1999).
6. Tornaletti, S. & Pfeifer, G.P. UV damage and repair mechanisms in mammalian cells. Bioessays 18, 221-8 (1996).
7. O'Connor, M.J. Targeting the DNA damage response in cancer. Mol Cell 60, 547-60 (2015).
8. Brandsma, I. & Gent, D.C. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 3, 9 (2012).
9. Davis, A.J. & Chen, D.J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2, 130-143 (2013).
10. Dasika, G.K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883-99 (1999).
11. Langerak, P. & Russell, P. Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B Biol Sci 366, 3562-71 (2011).
12. Ghosal, G. & Chen, J. DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res 2, 107-129 (2013).
13. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-8 (2009).
14. Lavin, M.F., Delia, D. & Chessa, L. ATM and the DNA damage response. Workshop on ataxia-telangiectasia and related syndromes. EMBO Rep 7, 154-60 (2006).
15. Marechal, A. & Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(2013).
16. Yan, S., Sorrell, M. & Berman, Z. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci 71, 3951-67 (2014).
17. Smith, J., Tho, L.M., Xu, N. & Gillespie, D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108, 73-112 (2010).
18. McKinnon, P.J. ATM and ataxia telangiectasia. EMBO Rep 5, 772-6 (2004).
19. Dasari, S. & Tchounwou, P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364-78 (2014).
20. Desoize, B. & Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hemat 42, 317-325 (2002).
21. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7, 573-84 (2007).
22. Basu, A. & Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 16, 2013-67 (2010).
23. Wang, Q.E. et al. Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells. Mol Cancer 10, 24 (2011).
24. Wang, D. & Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4, 307-20 (2005).
25. Oliver, T.G. et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev 24, 837-52 (2010).
26. Branzei, D. & Foiani, M. The DNA damage response during DNA replication. Curr Opin Cell Biol 17, 568-75 (2005).
27. Somyajit, K., Subramanya, S. & Nagaraju, G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 287, 3366-80 (2012).
28. Kee, Y. & D'Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24, 1680-94 (2010).
29. Walden, H. & Deans, A.J. The Fanconi Anemia DNA Repair Pathway: Structural and Functional Insights into a Complex Disorder. Annual Review of Biophysics 43, 257-278 (2014).
30. Moldovan, G.L. & D'Andrea, A.D. How the Fanconi anemia pathway guards the Genome. Annu Rev Genet 43, 223-249 (2009).
31. Ceccaldi, R., Sarangi, P. & D'Andrea, A.D. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17, 337-49 (2016).
32. Kim, H. & D'Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26, 1393-408 (2012).
33. Kennedy, R.D. & D'Andrea, A.D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 19, 2925-40 (2005).
34. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7, a016600 (2015).
35. Price, B.D. & D'Andrea, A.D. Chromatin remodeling at DNA double-strand breaks. Cell 152, 1344-54 (2013).
36. Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5, a012740 (2013).
37. Chu, G. Double strand break repair. J Biol Chem 272, 24097-100 (1997).
38. Scully, R. & Xie, A. Double strand break repair functions of histone H2AX. Mutat Res 750, 5-14 (2013).
39. Branzei, D. & Szakal, B. DNA damage tolerance by recombination: Molecular pathways and DNA structures. DNA Repair (Amst) 44, 68-75 (2016).
40. Gao, Y., Mutter-Rottmayer, E., Zlatanou, A., Vaziri, C. & Yang, Y. Mechanisms of Post-replication DNA repair. Genes (Basel) 8, 64 (2017).
41. Lee, K.Y. & Myung, K. PCNA modifications for regulation of post-replication repair pathways. Mol Cells 26, 5-11 (2008).
42. Burkovics, P., Sebesta, M., Balogh, D., Haracska, L. & Krejci, L. Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 42, 1711-20 (2014).
43. Vanoli, F., Fumasoni, M., Szakal, B., Maloisel, L. & Branzei, D. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet 6, e1001205 (2010).
44. Zhao, G.Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 25, 663-75 (2007).
45. Kawahara, T. et al. Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 69, 1054-68 (2008).
46. Avvakumov, N. & Cote, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395-407 (2007).
47. Legube, G. et al. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J 21, 1704-12 (2002).
48. Miotto, B. & Struhl, K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22, 2633-8 (2008).
49. Miotto, B. & Struhl, K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37, 57-66 (2010).
50. Burke, T.W., Cook, J.G., Asano, M. & Nevins, J.R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276, 15397-408 (2001).
51. Iizuka, M., Matsui, T., Takisawa, H. & Smith, M.M. Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26, 1098-108 (2006).
52. Carlson, S. & Glass, K.C. The MOZ histone acetyltransferase in epigenetic signaling and disease. J Cell Physiol 229, 1571-4 (2014).
53. Huang, F., Abmayr, S.M. & Workman, J.L. Regulation of KAT6 Acetyltransferases and their roles in cell cycle progression, stem cell maintenance, and human disease. Mol Cell Biol 36, 1900-7 (2016).
54. Perez-Campo, F.M., Costa, G., Lie-a-Ling, M., Kouskoff, V. & Lacaud, G. The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis. Immunology 139, 161-5 (2013).
55. Collins, C.T. & Hess, J.L. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 35, 1090-8 (2016).
56. Yang, X.J. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. Biochim Biophys Acta 1853, 1818-26 (2015).
57. Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21, 51-64 (2006).
58. Prives, C. & Lowe, S.W. Cancer: Mutant p53 and chromatin regulation. Nature 525, 199-200 (2015).
59. Yu, L. et al. Identification of MYST3 as a novel epigenetic activator of ERalpha frequently amplified in breast cancer. Oncogene 36, 2910 (2017).
60. Su, W.P. et al. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget 5, 6323-37 (2014).
61. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol Cell 10, 1223-33 (2002).