| 研究生: |
蕭玲君 Hsiao, Lin-June |
|---|---|
| 論文名稱: |
紅杉中受生長相調控之訊息傳遞基因之選殖與特性分析 Isolation and characterization of genes for signalling transduction from Sequoia sempervirens differentially expressed in mature and juvenile-phase shoots |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 紅杉 、生長相 、訊息傳遞 |
| 外文關鍵詞: | phase change, signal transduction, Sequoia sempervirens |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MAPK (mitogen-activated protein kinase)訊息傳遞途徑可以傳遞外界的訊號,以引發植物生理及形態上的適應,進而調節植物的生長與發育。本研究主要在分析紅杉(Sequoia sempervirens )新找到之SsMAPKA及SsMEKA之特性及功能,由我們的結果顯示,SsMAPKA基因表現與紅杉生長相的轉變有關聯性表現;另外,SsMEKA基因會隨著植物生長相的轉變而發生剪接選擇性(alternative splicing)。
根據親緣演化分析之結果,SsMAPKA屬於A2族群之MAPK,其氨基酸序列與芫荽PsD5具有82%之相同度。以南方墨點分析證實SsMAPKA基因在紅杉基因組中為單一基因。為進一步了解SsMAPKA基因之特性與功能,以北方墨點分析顯示,SsMAPKA基因在癒傷組織、根、莖及葉均有表現;在生長相的轉變上,SsMAPKA基因在紅杉老樹、1x至3x嫁接植株的頂端及基部的表現較多於4x至5x嫁接植株及年輕的植株。而在酵素活性的偵測上,於E.coli中大量表現GST-SsMAPKA融合蛋白,再以anti-phosphotyrosine抗體偵測發現,僅有GST-SsMAPKA以IPTG誘導後,可見一約64kDa分子量的蛋白質有被磷酸化的特性。更進一步選殖SsMAPKA基因啟動子,取得全長為1838bp,結果顯示,SsMAPKA之啟動子存在著11個ABREs的序列(ACGT)在cis-acting element的部位,另外尚有2個ABREs-like的序列(ACGTG)及6個與花粉發育(AGAAA)相關的序列。我們推測SsMAPKA在紅杉生長相的轉變可能扮演著調控的角色。
實驗選殖SsMAPKA上游調控因子―SsMEKA。根據序列分析結果顯示,在紅杉植株中共找到4種不同型式的MEKs,由親緣演化分析結果顯示,SsMEKA屬於A2族群之MEK,與菸草的NtMEK1有65%以上的相似度,參與植物細胞分裂的過程。此4種不同型式的MEKs,其中一種型式為在序列上多出一小段42bp的片段,含有intron的特性,將其命名為SsMEKA ⅡA。以南方墨點分析證實SsMEKA基因在紅杉基因組中為單一基因。在組織特異性表現分析顯示,SsMEKA基礎轉錄量均相同。分析SsMEKA ⅡA以RT-PCR產物,經由定序及南方墨點分析顯示,此基因在紅杉老樹、1x至3x嫁接植株表現較多於4x至5x嫁接植株及年輕的植株。此為MAPK cascades調節植物生長與發育中,首次提出中游的MEK經由選擇性剪接參與植物的發育。
我們的實驗亦首度發現,樹木成熟過程中,genomic DNA重組參與在紅杉生長相的轉變。
Phase change or maturation can be observed in all higher plants and affects reproductive competence, the morphology and growth rate of the vegetative body, as well as the regenerative potential of tissue explants. Efforts to elucidate the underlying mechanism of phase change of plants, or maturation and rejuvenation, have disclosed biochemical correlations, some of which could aid in furthering the investigations. Hence, the aims of this project are to characterize these phase-regulated signal transduction components.
Plants have developed elaborate mechanisms to perceive external signals and to manifest adaptive responses with proper physiological and morphological changes. The mitogen-activated protein (MAP) kinase cascade is one of the well-characterized intracellular signaling modules, and that cross-talk between various signal-transduction pathways might be concentrated at MEK level in plant MAPK cascades. In this study, two novel genes of Sequoia sempervirens, SsMAPKA, and SsMEKA have been identified and characterized.
According to the phylogenetic analysis based on the amino acid sequences, SsMAPKA belongs to the Group A2 MAPK subfamily, and shares high homology with PsD5 (82% identity) from Pisum sativum. Southern blot analysis showed that SsMAPKA is a single copy gene in S. sempervirens. Northern blot analysis showed that SsMAPKA was expressed in all plant organs. The mRNA level of SsMAPKA was accumulated in adult and 1x- to 3x- grafted shoots than in juvenile and 4x- to 5x- grafted shoots. SsMAPKA was fused to glutathione-S-transferase (GST) and the fusion protein was expressed in Escherichia coli. Results showed that the recombinant SsMAPKA was recognized by monoclonal anti-phosphotyrosine antibody. This result indicated that SsMAPKA is a functional protein kinase that has features characteristics of MAP kinases. The promoter of the SsMAPKA gene was isolated from S. sempervirens. The cloned promoter regions upstream of the transcription start site of SsMAPKA gene is 1,838bp. The most prominent matches identified include those to the consensus binding size for ABA-responsive promoters(ACGT or ACGTG)and for pollen-specific regulatory elements(AGAAA).
Then we made an attempt to isolate the SsMAPKA upstream factor, SsMEKA in signal transduction components. Four types of S. sempervirens PCR product have been isolated that encode putative protein kinases, designated SsMEKA ⅠA, SsMEKA ⅠAs, SsMEKA ⅡA and SsMEKA ⅡAs. According to the phylogenetic analysis based on the amino acid sequences, SsMEKA belongs to the Group A2 MEK subfamily. These kinases exhibit a high degree of homology to NtMEK1(65% identity), a tobacco protein that is a membrane of the family of mitogen-activated protein kinase kinase (MAPKKs), which appears to function in a cell-cycle-dependent manner. One of these isoforms SsMEKA IIA which contained the region that flanked the 42bp intron-like sequence was found in S. sempervirens. Southern blot analysis showed that SsMEKA is a single copy gene in S. sempervirens. Tissue-specific analysis indicated that the basal transcription level of SsMEKA was expressed in all organs in plants. Our results revealed that transcripts of the SsMEKA ⅡA gene accumulated predominantly in adult and 1x- to 3x- grafted shoots, and a small amount of the transcript was found in juvenile and 4x- to 5x- grafted shoots of S. sempervirens. Furthermore, we provide the first report that concentrated MEK by alternative splicing regulating phase change of plants in the MAPK cascades.
In this study, we propose that DNA rearrangement involved in woody plant maturation.
Banno H., Hirano K., Nakamura T., Irie K., Nomoto S., Matsumoto K., and Machida Y.(1993)NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol. Cell. Biol. 13: 4745-4752
Bardwell L., and Thorner J. (1996) A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs. Trends Biochem. Sci. 21: 373-374
Barizza E., Schiavo F.L., Terzi M., and Filippini F.(1999)Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett. 447: 191-194
Barr R.K., and Bogoyevitch M.A.(2001)The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases(JNK MAPKs). Int. J. Biochem. Cell Biol. 33: 1047-1063
Bate N., and Twell D.(1998)Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869
Berberich T., Sano H., and Kusano T.(1999)Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize. Mol. Gen. Genet. 262: 534-542
Bögre L., Calderini O., Binarova P., Mattauch M., Till S.,
Kiegerl S., Jonak C., Pollaschek C., Barker P., Huskisson N.S., Hirt H., and Heberle-Bors E.(1999)A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101-114
Bollman K.M., Aukerman M.J., Park M.Y., Hunter C., Berardini T.Z., and Poethig R.S. (2003)HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130: 1493-1504
Bolstad P.V., and Libby W.J.(1982)Comparison of radiate pine cuttings of hedge and tree-form origin after 7 growing seasons. Silvae Genet 31: 9-13
Bon M.C., and Monteuuis O.(1991)Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. II. Biochemical arguments. Physiol. Plant. 81: 116-120
Boulton T.G., Yancopoulos G.D., Gregory J.S., Slaughter C., Moomaw C., Hsu J., and Cobb M.H.(1990)An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249: 64-67
Bouriquet R., Tsogas M., and Blaselle A.(1985)Essais de rajeunissement de l’epicea par les cytokinines. Ann. AFOCEL 1984: 173-185
Brand M.H., and Lineberger R.D.(1992)In vitro rejuvenation of Betula (Betulaceae): Biochemical evaluation. Amer. J. Bot. 79: 626-635
Busk P.K., and Pages M. (1998) Regulation of abscisic acid induced transcription. Plant Mol. Biol. 37: 425–435
Cairns B.R., Ramer S.W., and Kornberg R.D.(1992)Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. Genes Dev. 6: 1305-1318
Calderini O., Bögre L., Vicente O., Binarova P., Heberle-Bors E., and Wilson C. (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111: 3091-3100
Calderini O., Glab N., Bergounioux C., Heberle-Bors E., and Wilson C.(2001)A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J. Biol. Chem. 276: 18139-18145
Cans C., Mangano R., Barila D., Neubauer G., and Superti-Furga G.(2000)Nuclear tyrosine phosphorylation:the beginning of a map. Biochem. Pharmacol. 60: 1203-15
Cardinale F., Meskiene I., Ouaked F., and Hirt H.(2002)Convergence and Divergence of Stress-Induced Mitogen-Activated Protein Kinase Signaling Pathways at the Level of Two Distinct Mitogen-Activated Protein Kinase Kinases. Plant Cell 14: 703-711
Charest D.L., Mordret G., Harder K.W., Jirik F., and Pelech S.L. (1993) Molecular cloning, expression and characterization of the human mitogen-activated protein kinase p44erk1. Mol. Cell. Biol. 13: 4679-4690
Chien J.C., and Sussex I.M.(1996)Differential Regulation of Trichome Formation on the Adaxial and Abaxial Leaf Surfaces by Gibberellins and Photoperoid in Arabidopsis thaliana(L.)Heynh. Plant Physiol. 111: 1321-1328
Colwill K., Pawson T., Andrews B., Prasad J., Manley J.L., Bell J.C., and Duncan P.I.(1996)The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15: 265–275
Cooper J.A., Bowen-Pore D.F., Raines E., Ross R., and Hunter T.(1982)Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31: 263-273
Cornish K., and Radin J.W.(1990)From metabolism to organism: an integrative view of water stress emphasizing abscisic acid, in: F. Katterman (Ed.), Environmental Injury to Plants, Academic Press, New York, pp. 89–112
Cox K.H., and Goldberg R.B.(1988)Analysis of plant gene expression. In C.H. Shaw (ed.), Plant Molecular Biology: A Practical approach. IRK Press, Oxford, pp. 1-35
Day M.E., Greenwood M.S., and Diaz-Sala C.(2002)Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiology 22: 507-513
Decroocq-Ferrant V., Decroocq S., van Went J., Schmidt E., and Kreis M.(1995)A homology of the MAP/ERK family of protein kinase gene is expressed in vegetative and in female reproductive organs of Petunia hybrda. Plant Mol. Biol. 27: 339-350
Dempsey D.A., and Klessig D.F.(1995)Signals in plant disease resistance. Bull. Inst. Pasteur. 93: 167-186
Desikan R., Hancock J.T., Ichimura K., Shinozaki K., and Neill S.J.(2001)Harpin Induces Activation of the Arabidopsis Mitogen-Activated Protein Kinases AtMPK4 and AtMPK6. Plant Physiol. 126: 1579-1587
Doorenbos J.(1954)”Rejuvenation” of Hedera helix in graft combinations. Ned. Akad. Wetensch. Amsterdam, Proc. 57: 99-102
Duerr B., Gawienowski M., Ropp T., and Jacobs T.(1993)MsERK1:a Mitogen-Activated Protein Kinase from a Flowering Plant. Plant Cell 5: 87-96
English J.M., Vanderbilt C.A., Xu S., Marcus S., and Cobb M.H.(1995)Isolation of MEK5 and Differential Expression of Alternatively Spliced Forms. J. Biol. Chem. 270: 28897-28902
Esser K., Tudzynski P., Stahl U., and Kuck U.(1980)A model to explain senescence in the filamentous fungus Podospora anserina by the action of plasmid like DNA. Mol. Gen. Genet. 178: 213-216
Ewald D., and Kretzschmar U.(1996)The influence of micrografting in vitro on tissue culture behavior and vegetative propagation of old European larch trees. Plant Cell Tissue Organ Cult. 4: 249-252
Finkelstein R.R., Gampala S.S.L., and Rock C.D. (2002) Abscisic acid in seeds and seedlings. Plant Cell (Suppl.) S15–S45
Fligiel S.E.G., Relan N.K., Dutta S., Tureaud J., Hatfield J., and Majumdar A.P.N. (1994) Aging diminishes gastric mucosal regeneration: relationship to tyrosine kinases. Laboratory Investigation 70: 764-774
Frye C.A., Tang D., and Innes R.W. (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA. 98: 373-378
Fu S.F., Chou W.C., Huang D.D., and Huang H.J.(2002)Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 43: 958-963
Fu S.F., Lin W.P., Ho S.L., Chou W.C., Huang D.D., Yu S.M., and Huang H.J.(2003)Molecular cloning and characterization of a novel starvation inducible MAP kinase gene in rice. Plant Physiol. Biochem. 41: 207-213
Gerwins P., Blank J.L., and Johnson G.L.(1997) Cloning of a Novel Mitogen-activated Protein Kinase Kinase Kinase, MEKK4, That Selectively Regulates the c-Jun Amino Terminal Kinase Pathway. J. Biol. Chem. 272: 8288-8295
Golovkin M., and Reddy A.S.N. (1999) An SC35-like Protein and a Novel Serine/Arginine-rich Protein Interact with Arabidopsis U1-70K protein. J. Biol. Chem. 274: 36428–36438
Greenwood M.S., Hopper C.A., and Hutchison K.W.(1989)Effect of Age on Shoot Growth, Foliar Characteristics, and DNA Methylation. Plant Physiol. 90: 406-412
Gui J.F., Tronchere H., Chandler S.D., and Fu X.D. (1994) Purification and characterization of a kinase specific for the serine- and arginine-rich pre-mRNA splicing factors. Proc. Natl. Acad. Sci. USA. 91: 10824–10828
Gustin M.C., Albertyn J., Alexander M., and Davenport K.(1998)MAP kinase Pathway in the Yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264-1300
Hardin S.C., and Wolniak S.M.(1998)Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta 206: 577-584
Hattori T., Totsuka M., Hobo T., Kagaya Y., and Yamamoto-Toyoda A.(2002)Experimentally Determined Sequence Requirement of ACGT-Containing Abscisic Acid Response Element. Plant Cell Physiol. 43: 136-140
He C., Fong S.H., Yang D., and Wang G.L. (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant–Microbe Interact. 12: 1064-1073
Hirt H.(1997)Multiple roles of MAP kinase in plant signal transduction. Trends Plant Sci. 2: 11-15
Hirt H.(2000)Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA. 97: 2405-2407
Holliday R., and Pugh J.E.(1975)DNA modification mechanisms and gene activity during development. Science 187: 226-232
Horvath D.P., Schaffer R., West M., and Wisman E.(2003)Arabidopsis microarray identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J. 34: 125-134
Huang H.J., Chen Y., Kuo J.L., Kuo T.T., Tzeng C.C., Huang B.L., Chen C.M., and Huang L.C.(1996)Rejuvenation of Sequoia sempervirens in Vitro:Changes in Isoesterases and
Isoperoxidases. Plant Cell Physiol. 37: 77-80
Huang H.J., Fu S.F., Tai Y.H., Chou W.C., and Huang D.D. (2002) Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol. Plant. 114: 572-580
Huang H.J., Lin Y.M., Huang D.D., Takahashi T., and Sugiyama M.(2003b)Protein Tyrosine Phosphorylation during Phytohormone-Stimulated Cell Proliferation in Arabidopsis Hypocotyls. Plant Cell Physiol. 44: 770-775
Huang L.C., Chow T.Y., Tseng T.C., Kuo C.I., Liu S.M., Ngoh M.G. Murashige T., and Huang H.J.(2003a)Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia sempervirens (D. Don) Endl. Bot. Bull. Acad. Sin. 44: 25-30
Huang L.C., Hsiao C.K., Lee S.H., Huang B.L., and Murashige T.(1992a)Restoration of vigor and rooting competence in stem tissues of mature citrus by repeated grafting of their shoot apices onto freshly germinated seedlings in vitro. In Vitro Cell. Dev. Biol. 28: 30-32
Huang L.C., Kuo C.I., Wang C.H., Murashige T., and Huang T.C.(2000)Ethylene evolution by juvenile and adult developmental phases of Sequoia sempervirens shoots cultured in vitro. Bot. Bull. Acad. Sin. 41: 263-266
Huang L.C., Lin L.Y., Chen C.M., Chen L.J., Huang B.L., and Murashige T.(1995)Phase reversal in Sequoia sempervirens in relation to mtDNA. Physiol. Plant. 94: 379-383
Huang L.C., Lius S., Huang B.L., Murashige T., Mahdi E.F.M., and Gundy R.V. (1992b)Rejuvenation of Sequoia sempervirens by Repeated Grafting of Shoot Tips onto Juvenile Rootstocks in vitro. Plant Physiol. 98: 166-173
Huang L.C., Pu S.Y., Murashige T., Fu S.F., Kuo T.T., Huang D.D., and Huang H.J.(2003c)Phase- and age-related differences in protein tyrosine phosphorylation in Sequoia sempervirens. Biol. Plant. 47: 601-603
Huang L.C., Weng J.H., Wang C.H., Kuo C.I., and Shieh Y.J.(2003d)Photosynthetic potentials of in vitro-grown juvenile, adult, and rejuvenated Sequoia sempervirens (D. Don) Endl. shoots. Bot. Bull. Acad. Sin. 44: 31-35
Huelskamp M., Schnittger A., and Folkers U. (1999) Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. Int. Rev. Cytol. 186: 147-178
Hunter T.(1995)Protein kinases and phosphatases: the ying and yang of protein phosphorylation and signaling. Cell 80: 225-236
Hutchison K.W., Sherman C.D., Weber J., Smith S.S., Singer P.B., and Greenwood M.S.(1990)Maturation in larch II: Effects of age on photosynthesis and gene expression in developing foliage. Plant. Physiol. 94: 1308-1315
Ichimura K., Mizoguchi T., and Shinozaki K. (1997) AtMRK1, an Arabidopsis protein kinase related to mammal mixed-lineage kinases and Raf protein kinases. Plant Sci. 130: 171-179
Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., and Shinozaki K.(2000)Various abiotic stress rapidly activate Arabidopsis MAP kinase ATMPK4 and ATMPK6. 24: 655-665
Ichimura K., Shinozaki K., and Tena G.(2002)Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301-308
Ikeyama S., Kokkonen G., Shack S., Wang X.T., and Holbrook N.J. (2002) Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J. 16: 114-116
Islas-Flores I., Oropeza C., and Hernanadez-Sotomayor S.M.T.(1998)Protein Phosphorylation during Coconut Zygotic Embryo Development. Plant Physiol. 118: 257-263
Jonak C., Heberle-Bors E., and Hirt H.(1994)MAP kinases: universal multipurpose signalling tools. Plant Mol. Biol. 24: 407-416
Jordan T., Schornack S., and Lahaye T.(2002)Alternative splicing of transcripts encoding Toll-like plant resistance proteins-what’s the functional relevance to innate
immunity? Trends Plant Sci. 7: 392-398
Kazan K.(2003)Alternative splicing and proteome diversity in plants:the tip of the iceberg has just emerged. Trends Plant Sci. 8: 468-471
Khokhlatchev A.V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., and Cobb M.H. (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605-615
Kieber J.J., Rothenberg M., Roman G., Feldmann K.A., and Ecker J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441
Ko C.W., Yang C.Y., and Wang C.S.(2002)A desiccation-induced transcript in lily ( Lilium longiflorum) pollen. J. Plant Physiol. 159: 765–772
Komjanc M., Festi S., Rizzotti L., Cattivelli L., Cervone F., and Lorenzo G.D. (1999) A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and
salicylic acid treatment. Plant Mol. Biol. 40: 945–957
Kovtun Y., Chiu W.L., Tena G., and Sheen J. (2000) From the Cover: Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA. 97: 2940-2945
Kovtun Y., Chiu W.L., Zeng W., and Sheen J. (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720
Krisak L., Strich, R., Winters R.S., Hall J.P., Mallory M.J., Kreitzer D., Tuan R.S., and Winter E.(1994)SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 8: 2151-2161
Kuo J. L., Huang H.J., Cheng C.M., Chen L.J., Huang B.L., Huang L.C., and Kuo T.T.(1995)Rejuvenation in vitro:Modulation of Protein Phosphorylation in Sequoia sempervirens. J. Plant Physiol. 146: 333-336
Lazar G., and Goodman H. M. (2000) The Arabidopsis splicing factor SR1 is regulated by alternative splicing. Plant Mol. Biol. 42: 571–581
Ligterink W., Kroj T., Nieden U.Z., Hirt H., and Scheel D.(1997)Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054-2057
Liu Y, Guyton K.Z., Gorospe M., Xu Q., Kokkonen G.C., Mock Y.D., Roth G.S., and Holbrook N.J. (1996) Age-related Decline in Mitogen-activated Protein Kinase Activity in Epidermal Growth Factor-stimulated Rat Hepatocytes. J. Biol.Chem. 271: 3604-3607
Lopato S., Kalyna M., Dorner S., Kobayashi R., Krainer A.R., and Barta A.(1999) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev. 13: 987-1001
Lorkovi’c Z.J., Kirk D.A.W., Lambermon M.H.L., and Filipowicz W.(2000)Pre-mRNA splicing in higher plants. Trends Plant Sci. 5: 160-167
Luan S., Ting J., and Gupta R. (2001)Protein tyrosine phosphatase in higher plants. New Phytol. 151: 155-164
Lyrene P.M.(1981)Juvenility and production of fast-rooting cuttings from blueberry shoot cultures. J. Am. Soc. Hort. Sci. 106: 396-398
Majumdar A.P.N., Moshier J.A., Arlow F.L., and Luk G.D.(1989)Biochemical changes in the gastric mucosa after injury in young and aged rats. Biochimica et Biophysica Acta 992: 35-40
Marshall C.J.(1994)MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet Dev. 4: 82-89
Martínez-García J.F., Monte E., and Quail P.H.(1999)A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 20: 261-267
Meskiene I., and Hirt H.(2000) MAP kinase pathways:
molecular plug-and-play chips for the cell. Plant Mol. Biol. 42: 791-806
Mikolajczyk M., Awotunde O.S., Muszynska G., Klessig D.F., and Dobrowolska G.(2000)Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant cell 12: 165-178
Mizoguchi T., Hayashida N., Yamaguchi-Shinozaki K., Kamada H., and Shinozaki K.(1993)ATMPKs:a gene family of plant MAP kinase in Arabidopsis thaliana. FEBS Lett. 336: 440-444
Mizoguchi T., Ichimura K., and Shinozaki K.(1997)Environmental stress response in plants: the role of
mitogen-activated protein kinase. Trends Biotechnol. 15: 15-19
Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., and Shinozaki K. (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93: 765-769
Monteuuis O.(1986)Microgreffage de points vegetatifs de Sequoiadendron giganteum Bucholz. Seculaires sur de jeunes emis cultives in vitro. C.R. Acad. Sci. Paris 302: 223-225
Morris P.C.(2001) MAP kinase signal transduction pathways in plants. New Phytol. 151: 67-89
Mouradov A., Cremer F., and Coupland G.(2002)Control of Flowering Time:Interacting Pathways as a Basis for Diversity. Plant Cell S111-S130
Munnik T., Ligterink W., Meskiene I., Calderini O., Beyerly J., Musgrave A., and Hirt H. (1999) Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J. 20: 381-388
Muzik T.J., and Cruzado H.J.(1958)Transmission of juvenile rooting ability from seedlings to adults of Hevea brasiliensis. Nature 181: 1288
Nevoigt E., and Stahl U.(1997)Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21: 231-241
Nishiguchi M., Yoshida K., Sumizono T., and Tazaki K.(2002)A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol. Genet Genomics. 267: 506-514
Nishihama R., Banno H., Kawahara E., Irie K., and Machida Y.(1997)Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases (MAPKKKs). Plant J. 12: 39-48
Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., Irie K., Ito M., Terada M., Banno H., Yamazaki Y., and Machida Y. (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109: 87-99
Nühse T.S., Peck S.C., Hirt H., and Boller T. (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275: 7521-7526
Payne D., Rossomando A., Martino P., Erickson A., Her J.H., Shabanowitz J., Hunt D., Weber M., and Sturgill T. (1991) Identification of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 5: 111-122
Pliego Alfaro F., and Murashige T.(1987)Possible rejuvenation of adult avocado by graftage onto juvenile rootstocks in vitro. HortSci. 22: 1321-1324
Poethig R.S.(1990) Phase Change and the Regulation of Shoot Morphogenesis in Plants. Science 250: 923-930
Poethig R.S.(2003)Phase Change and the Regulation of Developmental Timing in Plants. Science 301: 334-336
Quimby B.B., Wilson C.A., and Corbett A.H. (2000) The interaction between Ran and NTF2 is required for cell cycle progression. Mol. Biol. Cell 11: 2617-2629
Rane M.J., Coxon P.Y., Powell D.W., Webster R., Klein J.B., Pierce W., Ping P., and McLeish K.R.(2001)p38 Kinase-dependent MAPKAPK-2 Activation Functions as 3-Phosphoinositide-dependent Kinase-2 for Akt in Human Neutrophils. J. Biol. Chem. 276: 3517-3523
Razin A., and Szyf M.(1984) DNA methylation patterns:formation and function. Biochim. Biophys. Acta. 782: 331-342
Ren D., Yang H., and Zhang S. (2002) Cell death mediated by
MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277: 559-565
Reszka A.A., Bulinski J.C., Krebs E.G., and Fischer E.H.(1997)Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol. Biol. Cell 8: 1219-1232
Revilla M.A., Pacheco J., Casares A., and Rodriguez R.(1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell.
Dev. Biol. Plant 32: 257-261
Riggs A.D.(1975)X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 14: 9-25
Robinson M.J., and Cobb M.H. (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180-186
Rogler C.E., and Dahmus M.E.(1974)Gibberellic acid-induced phase change in Hedera helix as studied by deoxyribonucleic acid-ribonucleic acid hybridization. Plant Physiol. 54: 88-94.
Rogler C.E., and Hackett W.P. (1975)Phase change in Hedera helix: induction of the mature to juvenile phase change by gibberellin A3. Physiol. Plant. 34: 141-147
Ronemus M.J., Galbiat M., Ticknor C., Chen J., and Dellaporta S.L.(1996)Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273: 654-657
Rossomando A.J., Payne D.M., Weber M.J., and Sturgill T.W. (1988) Evidence that pp. 42, a major tyrosine kinase target, is a mitogen-activated serine/threonine protein kinase. Proc. Natl. Acad. Sci. USA. 86: 6940-6943
Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.-Y., and Hunt M.D.(1996)Systemic Acquired Resistance. Plant Cell 8: 1809-1819
Ryals J.A., Uknes S., and Ward E.(1994)Systemic Acquired Resistance. Plant Physiol. 104: 1109-1112
Samaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., Lenart P., Salaj J., Volkmann D., Bogre L., Baluska F., and Hirt H. (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21: 3296-3306
Sambrook J., Fritsch E.F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edi. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Savaldi-Goldstein S., Aviv D., Davydov O., and Fluhr R.(2003)Alternative Splicing Modulation by a LAMMER Kinase Impinges on Developmental and Transcriptome Expression. Plant Cell 15: 926-938
Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., and Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113-123
Schoenbeck M.A., Samac D.A., Fedorova M., Gregerson R.G., Gantt J.S., and Vance C.P. (1999) The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol. Plant–Microbe Interact. 12: 882-893
Shi E., Kan M., Xu J., Wang F., Hou J., and Mckeehan W.L.(1993)Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants. Mol. Cell. Biol. 13: 3907-3918
Simpson S.D., Nakashima K., Narusaka Y., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003)Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33: 259–270
Soyano T., Nishihama R., Morikiyo K., Ishikawa M., and Machida Y.(2003)NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev. 17: 1055–1067
Stafstrom J.P., Altschuler M., and Anderson D.H.(1993)Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol. Biol. 22: 83-90
Stanton V.P., Nichols D.W., Laudano A.P., and Cooper G.M.(1989)Definition of the Human raf Amino-Terminal Regulatory Region by Deletion Mutagenesis. Mol. Cell. Biol. 9: 639-647
Tan J.L., and Spudich J. (1990) Developmentally regulated protein-tyrosine kinase genes in Dictyostelium discoideum. Mol. Cell. Biol. 10: 3578-3583
Telfer A., Bollman K.M., and Poethig R.S.(1997)Phase chang and the regulation of trichome distribution in Arabidopsis thaliana. Development 124: 645-654
Telfer A., and Poethig R.S.(1998)HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125: 1889-1898
Tregear J.W., Jouannic S., Schwebel-Dugué N., and Kreis M. (1996) An unusual protein kinase displaying characteristics of both the serine/threonine and tyrosine families is
encoded by the Arabidopsis thaliana gene ATN1. Plant Sci. 117: 107-119
Treisman R.(1996)Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205-215
Usami S., Banno H., Ito Y., Nishihama R., and Machida Y.(1995)Cutting activates a 46-kilodalton protein kinase in plants. Proc. Natl. Acad. Sci. USA. 92: 8660-8664
Walker N.(1986)Sequoia sempervirens. Rejuvenilisation et culture de meristemes en cascade. Ann. AFOCEL 1985: 25-47
Wang C.S., Liau Y.E., Huang J.C., Wu T.D., Su C.C., and Lin C.H.(1998)Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-14
Watson, J.C., and Thompson W.F.(1986)Purification and restriction endonuclease analysis of plant nuclear DNA. In Methods of Enzymology, Academic Press, San Diego, pp. 57-75
Weg-Remers S., Ponta H., Herrlich P., and König H.(2001)Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J. 20: 4194-4203
Weiss L., Whitmarsh A.J., Yang D.D., Rincón M., Davis R. J., and Flavell R.A. (2000)Regulation of c-Jun NH2-terminal Kinase(Jnk) Gene Expression during T Cell Activation. J. Exp. Med. 191: 139-145
Wilsbacher J.L., Goldsmith E.J., and Cobb M.H.(1999)Phosphorylation of MAP Kinases by MAP/ERK Involves Multiple Regions of MAP Kinases. J. Biol. Chem. 274: 16988-16994
Wilson C., Anglmayer R., Vicente O., and Heberle-Bors E. (1995) Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated protein kinase from tobacco. Eur. J. Biochem. 233: 249-257
Wilson C., Eller N., Gartner A., Vicente O., and Heberle-Bors E.(1993)Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol. Biol. 23: 543-551
Woo H.H., Hackett W.P., and Das A.(1994)Differential expression of a chlorophyll a/b binding protein gene and a proline rich protein gene in juvenile and mature phase English ivy (Hedera helix). Physiol. Plant. 92: 69-78
Xiao S.H., and Manley J.L.(1997)Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes. Dev. 11: 334-344
Xiao Z.Q., and Majumdar A.P.N.(2000)Induction of transcriptional activity of AP-1 and NF-kB in the gastric mucosa during aging. Am J. Physiol. Gastrointest Liver Physiol. 278: G855–G865
Xiong L., and Yang Y. (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: 745-759
Yang K.Y., Liu Y., and Zhang S. (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA. 98: 741-746
Yang S.H., Yamaguchi Y., Koizumi N., Kusano T., and Sano H.(2002)Promoter analysis of tbzF, a gene encoding a bZIP-type transcription factor, reveals distinct variation in cis-regions responsible for transcriptional activation between senescing leaves and flower buds in tobacco plants. Plant Sci. 162: 973-980
Yeh C.M., Hung W.C., and Huang H.J.(2003)Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiol. Plant. 119: 392-399
Yen T.C., Su J.H., King K.L., and Wei Y.H.(1991)Ageing-associated 5 Kb deletion in human liver mitochondrial DNA. Biochem. Biophys. Res. Commun. 178: 124-131
Zhang B., Chen W., Foley R.C., Buttner M., and Singh K.B.(1995)Interactions between Distinct Types of DNA Binding Proteins Enhance Binding to ocs Element Promoter Sequences. Plant Cell 7: 2241-2252
Zhang S., and Klessig D.F. (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809-824
Zhang S., and Klessig D.F. (1998) The tobacco wounding-activated MAP kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA. 95: 7225-7230
Zhang S., and Klessig D.F.(2000)Pathogen-induced MAP kinase in tobacco. Results Probl Cell Differ. 27: 65-84
Zhang S., Liu Y., and Klessig D.F. (2000)Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J. 23: 339-347
Zheng C.F., and Guan K.L.(1993)Properties of MEKs, the Kinases That Phosphorylate and Activate the Extracellular Signal-regulated Kinases. J. Biol. Chem. 268: 23933-23939
Zhou G., Bao Z.Q., and Dixon J.E.(1995)Components of a New Human Protein Kinase Signal Transduction Pathway. J. Biol. Chem. 270: 12665-12669