| 研究生: |
官大明 Kuan, Ta-Ming |
|---|---|
| 論文名稱: |
以有機金屬氣相磊晶系統成長氮化物半導體及其相關高電子移動率及高頻元件之製作及研究 The Study of Nitride-based High Mobility and High Frequency Devices Grown by Metalorganic Vapor Phase Epitaxy System |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 張守進 Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 有機金屬氣相磊晶 、氮化鎵 、異質結構場效電晶體 |
| 外文關鍵詞: | MOVPE, GaN, HFET |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,藉由即時偵測系統以及量測分析,我們可以有系統的研究探討磊晶品質以及特性分析。我們並且能夠成功的製作出氮化鋁鎵與氮化鎵異質結構場效電晶體,其主要是利用其介面所形成的二維電子雲(2DEG)與壓電效應(piezoelectric)。對於新型態的氮化鎵與氮化銦鎵二維電子雲異質結構場效電晶體也有進一步的探討。另外我們使用了再成長(regrowth)的方式來改善我們的元件。
利用有機金屬法成長的電晶體,摻鎂(Mg)高阻抗絕緣層提供良好的電晶體關閉特性。我們比較了兩組不同的歐姆接觸之合金金屬,鉻/鋁以及鈦/鋁/鈦/金,藉由傳輸線模型可得知使用鈦/鋁/鈦/金的元件會有比較佳的直流與高頻特性。元件顯示了很低的閘極漏電流以及很高的崩潰電壓(> -100 V)。最後我們更可以藉由製程的改善以及閘極線寬的縮小,大幅的提升直流及高頻特性。另一方面,我們使用了表面鍍上氧化層的技術,使得電流衰退現象幾乎不再出現。
由於氮化銦(鎵)材料在理論特性上都比氮化鎵以及氮化鋁鎵來得好,所以我們嘗試成長新穎的氮化鎵與氮化銦鎵異質結構場效電晶體,我們更進一步的探討有無鎂摻雜的電流阻絕層以及在其上的無摻雜氮化鎵緩衝層對元件特性的影響,最終跟文獻上的結果相比,我們獲得了很好的元件特性。
我們使用不同偏角度的藍寶石基板成長異質結構場效電晶體元件,可以發現這種方法可以有效的改善其缺陷與差排的密度。再成長方式的磊晶,我們在研究中發現可以結合兩種成長技術優點,在有機金屬氣相磊晶系統成長的氮化鎵基板上利用分子束磊晶法成長出高品質的二維電子雲,並且能夠擁有平坦的表面。如此的磊晶技術成長,我們可以獲得比傳統純粹使用有機金屬氣相磊晶系統或是分子數磊晶成長系統還好的直流及高頻特性。
In this dissertation, the growth and characterization of nitride-based epilayers have been systematically studied by using in-situ reflectance and ex-situ measurements. We have also successfully fabricated the AlxGa1-xN/GaN 2-dimentional electron gas (2DEG) heterostructure field effect transistors (HFETs), novel GaN/InxGa1-xN 2DEG HFETs and improved AlxGa1-xN/GaN 2DEG HFETs by introducing regrowth technique.
For AlxGa1-xN/GaN 2DEG heterostructure field effect transistors (HFETs), a high quality AlGaN/GaN 2DEG heterostructure on a semi-insulating current blocking layer by using bis-cyclopentadienyly magnesium (Cp2Mg) doping process grown by MOVPE system have successfully fabricated. We use two different types of alloy for ohmic contact metals, Cr/Al and Ti/Al/Ti/Au. As the result of getting lower contact resistance and specific contact resistance by using CTLM model , so we choose Ti/Al/Ti/Au for Source-Drain contacts to obtain better HFET devices electrical characteristics such as gmmax 、IDSmax than using Cr/Al for metal contacts. The ohmic contact on the high bandgap AlGaN and sheet carrier densities in 2DEG affected the DC and RF electrical properties in HFETs. The HFET devices show small gate leakage current of few micro ampere levels at VGS = -20 V and the breakdown voltage is more than -100 V. The DC and RF characteristics of AlGaN/GaN 2DEG are also improved by using optimizing process techniques. We also demonstrate a surface passivation technique to suppress the drain current collapse effect of AlxGa1-xN/GaN 2DEG HFETs.
Novel structure of GaN/ InxGa1-xN 2DEG HFETs have also been grown by MOVPE system and fabricated. The In(Ga)N epilayers have good potential to be the materials for high mobility and high frequency devices based on its theoretical limits. We compare the device structure with and without the Mg-doped current blocking layer and it is shown that the isolation layer is necessary for our 2DEG structure. Further, we demonstrate an improvement of device characteristics by introducing un-GaN buffer layer on top of Mg-doped current blocking layer. We achieve a better DC performance than the previous work of literature.
Moreover, we demonstrate a new technique of growing HFETs on vicinal sapphire substrates. These off-axis substrates are proved to reduce the threading dislocations (TDs) of our epilayers. The regrowth technique has been studied. The high quality AlGaN/GaN 2DEG epilayers grown by ammonia-MBE system on the MOVPE templates are successfully fabricated. We also significantly improve the surface smoothness, and consequently improve electrical characteristics on MOVPE templates by ammonia-MBE system. The results of regrowth technique are better than the devices which are either completely grown by MOVPE system or completely grown by ammonia-MBE system.
[1] S. N. Mohammad, A. Salvador, and H. Morkoc, “Emerging gallium nitride based devices”, Proc. IEEE, vol. 83, pp. 1306-1355, 1995.
[2] H. Morkoc, in Proceedings of International Symposium on Blue Lasers and Light Emitting Diodes, Chiba University, Japan, March 5-7, 1996.
[3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol.76, pp.1363-1398, 1994.
[4] S. Strite and H. Morkoc, “GaN, AlN, and InN: A review”, J. Vac. Sci. Tech. B., vol.10, pp.1237-1266, 1992.
[5] J. F. Schetzina, in International Symposium on Blue Lasers and Light emitting Diodes, Chiba University, Japan, March 5-7, 1996.
[6] I. Akasaki and H. Amano, International Symposium on Blue Lasers and Light Emitting Diodes, Chiba University, Japan, March 5-7,1996.
[7] M. E. Lin, S. Strite, and H. Morkoc, “The physical properties of AlN, GaN and InN”, in The Encyclopedia of Advanced Materials, eds. D. Bloor, M. C. Fleming, R. J. Brook, S. Mahajan, R. W. Cahn, pp. 79-96, Pergamon Press, 1994.
[8] S. Nakamura, T. Mukai, and M. Semoh, “Candela-class high -brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol.64, 1687, 1994.
[9] S. Nakamura, T. Mukai, and M. Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes”, Jpn. J. Appl. Phys. vol.30, pp.L1998-2001, 1991.
[10] S. Nakamura, M. Senoh, S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well Structure Laser Diodes”, Jpn. J. Appl. Phys., vol.35, pp.L74-76, 1996.
[11] H. Tang, J. B. Webb, P. Coleridge, J. A. Bardwell, C. H. Ko, Y. K. Su, and S. J. Chang, “Scattering lifetimes due to interface roughness with large lateral correlation length in AlxGa1-xN/GaN two-dimensional electron gas”, Phy. Rev. B, vol.66, pp.1-7, 2002.
[12] Y. K. Su, S. J. Chang, C. H. Ko, J. F. Chen, T. M. Kuan, W. H. Lan, W. J. Lin, Y. T. Cherng, and J. Webb, “InGaN/GaN Light Emitting Diodes With a p-Down Structure”, IEEE Trans. Electron Devices, vol. 49, pp.1361-1366, 2002.
[13] C. H. Ko, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin, and J. Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diodes Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys., vol.41, pp.2489-2492, 2002.
[14] W. C. Lai, S. J. Chang, J. K. Sheu, and J. F. Chen, “InGaN/AlInGaN light emitting diodes”, IEEE Photon. Technol. Lett., vol.13, pp.559-561, 2001.
[15] H. Morkoc: Beyond SiC! III-V nitride based heterostructures and devices, in SiC Materials and Devices, Semiconductors and Semimetals, Vol.52 (Academic, San Diego, CA 1998).
[16] H. Morkoc, “Nitride Semiconductors and Devices”, 1999.
[17] H. M. Manasevit, “Single-Crystal Gallium Arsenide on Insulating Substrates”, Appl. Phys. Lett., vol.12, pp.156-159, 1968.
[18] H. M. Manasevit, and W. I. Simpson, Electronchem. Soc., vol.116, pp.1725, 1969.
[19] H. M. Manasevit, and K. L. Hess, J. Electrochem. Soc., vol.126, pp.2031, 1979.
[20] S. Yoshida, S. Misawa, and A. Itoh, “GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source”, Appl. Phys. Lett., vol.67, pp.1686, 1995.
[21] S. Yoshida, S. Misawa, Y. Fuji, S. Tanaka, H. Hayakawa, S. Gonda, and A. Itoh, J. Vac. Sci. Tech. vol.16, pp.990, 1979.
[22] S. Yoshida, S. Misawa, and S. Gonda, “Properties of AlxGa1-xN films prepared by molecular beam epitaxy”, J. Appl. Phys., vol.53, pp.6844-6848, 1982.
[23] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates”, Appl. Phys. Lett., vol.42, pp.427-429, 1983.
[24] S. Yoshida, S. Misawa, and S. Gonda, “ Epitaxial growth of GaN/AlN heterostructures”, J. Vac. Sci. Tech. B., vol.1, pp.250-253, 1983.
[25] R. C. Powell, N. E. Lee, and J. E. Greene, “Growth of GaN(0001) 11 on Al2O3(0001) by gas-source molecular beam epitaxy”, Appl. Phys. Lett., vol.60, pp.2505-2507, 1992.
[26] Z. Yang, L. K. Li, and W. I. Wang, “GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source”, Appl. Phys. Lett., vol.67, pp.1686-1688, 1995.
[27] Y. Moriyasu, H. Goto, N. Kuze, and M. Matsui, J. Cryst. Growth., vol.150, pp.916, 1995.
[28] W. Kim, O. Aktas, A. E. Botchkarev, A. Salvador, S. N. Mohammad, and H. Morkoc, “Reactive molecular beam epitaxy of wurtzite GaN: Materials characteristics and growth kinetics”, J. Appl. Phys., vol.79, pp.7657-7666, 1996.
[29] M. Kamp, M. Mayer, A. Pelzmann, A. Thies, H. Y. Chung, H. Sternschulte, O. Marti, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 395, pp.135, 1996.
[30] M. Kamp, M. Mayer, A. Pelzmann, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 449, pp.161, 1997.
[31] N. Grandjean, J. Massies, P. Vennegues, M. Laugt, and M. Leroux, “Epitaxial relationships between GaN and Al2O3(0001) substrates”, Appl. Phys. Lett., vol.70, pp.643-645, 1997.
[32] N. Grandjean, M. Laugt, M. Leroux, and J. Massies, “Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers”, Appl. Phys. Lett., vol.71, pp.240-242, 1997.
[33] N. Grandjean, J. Massies, P. Vennegues, and M. Leroux, “Molecular-beam epitaxy of gallium nitride on (0001) sapphire sunstrates using ammonia”, J. Appl. Phys., vol.83, pp.1379-1383, 1998.
[34] O. Aktas, W. Kim, Z. Fan, A. Botchkorev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoc, “High transconductance normally-off GaN MODFETs”, Electron. Lett., vol.31, pp.1389-1390, 1995.
[35] T. J. Schmidt, W. Shan, J. J. Song, A. A. Salvador, W. Kim, O. Atakas, A. Botchkarev, and H. Morkoc, “Room-temperature stimulated emission in GaN/AlGaN separate confinement heterostructures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.68, pp.1820-1822, 1996.
[36] J. S. Yuan, C. C. Hsu, R. M. Cohen, and G. B. Stringfellow, “ Organometallic vapor phase epitaxial growth of AlGaInP”, J. Appl. Phys., vo.57, pp.1380-1383, 1985.
[37] A. Thon, and T. F. Kuech, Mat. Res. Soc., vol.97, 1996.
[38] G. E. Coates, M. L. H. Green, P. Powell, and K. Wade, Principles of Organometallic Chemistry, Methuen, London.
[39] T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mat., vol.21, pp.157, 1992.
[40] S. Nakamura, “Analysis of Real-Time Monitoring Using Inter- ference”, Jpn. J. Appl. Phys., vol.30, pp.1348-1353, 1991.
[41] S. Nakamura, “In Situ Monitoring of GaN Growth Using Inter- ference Effects”, Jpn. J. Appl. Phys. vol.30, pp.1620-1627, 1991.
[42] R. F. Karlicek, M. Schurman, C. Tran, T. Salagaj, Y. Li, and R. A. Stoll, III-V Rev., vol.10, pp.20, 1997.
[43] T. B. Ng, J. Han, R. M. Biefeld, M. V. Weckwerth, “In-situ reflectance monitoring during MOCVD of AlGaN”, J. Electron. Mater., vol.27, pp.190, 1998.
[44] M. Luenenbuerger, H. Protzmann, M. Heuken, H. Juergensen, Proc. EW-MOVPE VIII, pp.341, 1999.
[45] D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi, “Intrinsic AlxGa1-xN detectors for the entire compositional range”, Proc SPIE 2999, pp. 267-274, 1996)
[46] S. Ruffenach-Clur, O. Briot, B. Gil, R.-. Aulombard, and J. L. Rouviere, “MOVPE growth and structural characterization of AlxGa1-xN”, MRS Internet J. Nitride Semicond. Res.2, 27, 1997.
[47] M.D. Bremser, W.G. Perry, T. Zhevela, N.V. Edwards, O.H. Nam, N. Parikh, D.E. Aspnes, and Robert F. Davis, “Growth, doping and characterization of AlxGa1-xN thin film alloys on 6H-SiC(0001) substrates”, MRS Internet J. Nitride Semicond. Res. 1, 8, 1996.
[48] M. Shin, A.Y. Polyakov, M. Skowronski, G.S. Rohrer, and R.G. Wilson, “Surface defects in GaN and AlxGa1-xN epilayers deposited on sapphire by organometallic vapor phase epitaxy”, Mat. Sci. Forum 264-268, pp. 1251-1254, 1998.
[49] W.V. Lundin, A.S. Usikov, B.V. Pushnyi, U.I. Ushakov, M.V. Stepanov, N.M. Shmidt, T.V. Shubina, A.V. Sakharov, N.N. Faleev, V.A. Solov.ev, A.A. Sitnikova, Yu.A. Kudriavtsev, B.Ya. Ber, and Yu.M Zadiranov, “Optical and structural studies of thick AlGaN alloy layers and AlGaN/GaN heterostructures on sapphire substrates”, Mat. Sci. Forum 264-268, pp. 1315-1318, 1998.
[50] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode”, second edition, 2000.
[51] Jacques I. Editor, and Theodore D. Moustakas, “Gallium Nitride (GaN) I ”, 1998.
[52] Y. Ayalsi, Microwave J. vol.25, pp.719-723, 1982.
[53] A. Gropinath and J. Rankin, IEEE Trans. Electron Devices, vol.32, pp.1272-1278, 1985.
[54] A. Gropinath, IEEE Electron Device Lett., vol.6, pp.505-506, 1985.
[55] N. Jain and R. Gutmann, “Modeling and design of GaAs MESFET control devices for broad-band applications”, IEEE Trans. Microwave Theory Tech., vol.38, pp.109-117, 1990.
[56] Y. –F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100V”, IEEE Electron Device Lett., vol.18, pp.290-292, 1997.
[57] O. Aktas, Z. F. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoc, “Microwave performance of AlGaN/GaN inverted MODFET’s”, IEEE Electron Device Lett., vol.18, pp.293-295, 1997.
[58] M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, and J. A. Higgins, “Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors”, IEEE Electron Device Lett., vol.17, pp.325-327, 1996.
[59] Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Measured microwave power performance of AlGaN/GaN MODFET”, IEEE Electron Device Lett., vol.17, pp.455-457, 1996.
[60] Z. Fan, C. Lu, A. Botchkarve, H. Tang, A. Salvador, O. Aktas, W. Kim, and H. Morkoc, “ AlGaN/GaN double heterostructure channel modulation doped field effect transistor (MODFETs)”, Electron. Lett., vol.33, pp.814-815, 1997.
[61] O. Aktas, Z. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoc, “Microwave performance of AlGaN/GaN inverted MODFET’s”, IEEE Electron Device Lett., vol.18, pp.293-295, 1997.
[62] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, “Short-channel GaN/AlGaN doped channel heterostructure field effect transistors with 36.1 cutoff freq”, Electron. Lett., vol.32, pp.357, 1996.
[63] Y. F. Wu, B. P. Keller, S. Keller, N. X. Nguygen, M. Le, C. Nguyen, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “Short channel AlGaN/GaN MODFET’s with 50-GHz fT and 1.7-W/mm output-power at 10GHz”, IEEE Electron Device Lett., vol.18, pp.438-440, 1997.
[64] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Hehias, and S. P. Denbaars, “High Al-content AlGaN/GaN MODFETs for ultrahigh performance”, IEEE Electron Device Lett., vol.19, pp.50-53, 1998.
[65] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzman, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face”, J. Appl. Phys., vol.85, pp.3222-3233, 1999.
[66] R. Vetury, N.-Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs”, IEEE Trans. Electron Devices, vol.48, pp.560-566, 2001.
[67] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys. 85, 3222-3233, 1999.
[68] P. Ruterana, M. Albrecht, J. Neugebauer “Nitride Semiconductors Handbook on Materials and Devices”, Chapter 12.
[69] N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Mittereder, W. T. Anderson, “Cr/Al and Cr/Al/Ni/Au ohmic contacts to n-type GaN”, Journal of Applied Physic, vol.87, number1, 1th January, 2000.
[70] M. W. Fay, G. Moldovan, P. D. Brown, I. Harrison, J. C. Birbeck, B. T. Hughes, M. J. Uren, T. Martin “Structural and electrical characterization of Au/Ti/Al/Ti/AlGaN/GaN ohmic contacts” , J.Appl.Phys, vol.92, number1, 1th July, 2002.
[71] J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, J. B. Weeb “Microstructural analysis of Ti/Al/Ti/Au ohmic contacts to n-AlGaN/GaN”, American Vacuum Society, 2002.
[72] A. N. Bright, P. J. Thomas, M. Weyland, D. M. Tricker, C. J. Humphreys, R. Davies “Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy”, Journal Of Applied Physics vol.89, number6, 15th March, 2001.
[73] W. Liu, “Fundamentals of III-V devices HBTs, MESFETs, and HFETs/HEMTs”, Chapter 5
[74] I. Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Verury, U. K. Mishra, I. P. Smorchkova, N. X. Nguyen, and E. Kohn, “Current instabilities in GaN-based devices”, IEEE Electron Device Lett., vol.22, pp.62-64, 2001.
[75] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs”, IEEE Trans on Electron Devices, vol.48, pp.560-566, 2001.
[76] V. Vertiatchikh, L. F. Eastman, W. J. Schaff, and T. Prunty, “Effect of surface passivation of AlGaN/GaN heterostructure field-effect transistor”, Electronics Letters, vol.38, pp.388-389, 2002.
[77] A. Gropinath and J. Rankin, IEEE Trans. Electron Devices, vol.32, pp.1272-1278, 1985.
[78] A. Gropinath, IEEE Electron Device Lett., vol.6, pp.505-506, 1985.
[79] N. Jain and R. Gutmann, “Modeling and design of GaAs MESFET control devices for broad-band applications”, IEEE Trans. Microwave Theory Tech., vol.38, pp.109-117, 1990.
[80] Y. –F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100V”, IEEE Electron Device Lett., vol.18, pp.290-292, 1997.
[81] O. Aktas, Z. F. Fan, A. Botchkarev, S. N. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoc, “Microwave performance of AlGaN/GaN inverted MODFET’s”, IEEE Electron Device Lett., vol.18, pp. 293-295, 1997.
[82] M. A. Khan, Q. Chen, J. W. Yang, M. S. Shur, B. T. Dermott, and J. A. Higgins, “Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors”, IEEE Electron Device Lett., vol.17, pp. 325-327, 1996.
[83] Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Measured microwave power performance of AlGaN/GaN MODFET”, IEEE Electron Device Lett., vol.17, pp. 455-457, 1996.
[84] Z. Fan, C. Lu, A. Botchkarve, H. Tang, A. Salvador, O. Aktas, W. Kim, and H. Morkoc, “AlGaN/GaN double heterostructure channel modulation doped field effect transistor (MODFETs)”, Electron. Lett., vol.33, pp. 814-815, 1997.
[85] S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett., vol.72, pp. 2014-2016, 1998; “InGaN/GaN/AlGaN-based laser diodes with cleaved facets grown on GaN substrates”, Appl. Phys. Lett., vol. 73, pp. 832-834, 1998.
[86] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur “Properties of advanced semiconductor materials”, Chapter 3.
[87] Y. M. Hsin, H. T. Hsu, C. C. Chuo, and J. I. Chyi, “Device characteristics of the GaN/InGaN-doped channel HFETs”, IEEE Electron. Dev. Lett., vol.22, pp. 501-503, 2001.
[88] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition”, Appl. Phys. Lett, vol.70, pp. 1089-1091, 1997.
[89] C. C. Chuo, C. M. Lee, and J. I. Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett, Vol.78, pp. 314-316, 2001.
[90] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron., vol.8, pp. 744-748, 2002.
[91] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron., vol.8, pp. 278-283, 2002.
[92] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen and B. R. Huang, “Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts”, IEEE Photon. Technol. Lett., vol.14, pp. 1668-1670, 2002.
[93] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, “InGaN-AlInGaN multiquantum-well LEDs”, IEEE Photon. Technol. Lett., vol.13, pp. 559-561, 2001.
[94] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, “Reduction of dark current in AlGaN-GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer”, IEEE Electron. Dev. Lett., vol.25, pp. 593-595, 2004.
[95] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact”, IEEE Photon. Technol. Lett., vol.16, pp. 1002-1004, 2004.
[96] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El-Masry “Determination of the critical layer thickness in the InGaN/GaN heterostructures”, Appl. Phys. Lett, Vol. 75, pp. 2776-2778, 1999.
[97] J. A. Bardwell, I. Foulds, B. Lamontagne, H. Tang, J. B. Webb, P. Marshall, S. J. Rolfe, J. Stapledon, and T. W. MacElwee, “Fabrication of high performance GaN modulation doped field effect transistors”, J. Vac. Sci. Technol. A, vol. 18, pp. 750-753, 2000.
[98] J. A. Bardwell, G. I. Sproule, Y. Liu, H. Tang, J. B. Webb, J. Fraser and P. Marshall, “Comparison of two different Ti/Al/Ti/Au ohmic metallization schemes for AlGaN/GaN”, J. Vac. Sci. Technol. B, vol. 20, pp. 1444-1447, 2002.
[99] S. N. Mohammad, A. A. Salvador and H. Morkoc, proc. IEEE 83, pp. 1306, 1995.
[100] S. Nakamura, M. Senoh, N. Iwasa and S. C. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
[101] S. Nakamura, M. Senoh, S. C. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 233 K”, Appl. Phys. Lett., vol. 69, pp. 3034, 1996.
[102] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
[103] Z. Fan, C. Lu, A. E. Botchkarev, H. Tang, A. Salvador, O. Aktas, W. Kim and H. Morkoc, “AlGaN/GaN double heterostructure channel modulation doped field effect transistors (MODFETs)”, Electronics Lett., vol. 33, pp. 814-815, 1997.
[104] M. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burm and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett., vol. 66, pp. 1083-1085, 1995.
[105] X. Q. Shen, H. Matsuhata and H. Okumura, “Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates”, Appl. Phys. Lett., vol. 86, pp. 021912-02914, 2005.
[106] S. W. Kim, H. Aida and T. Suzuki, Phys. Stat. Sol. C, vol. 1, pp. 2483, 2004.
[107] P. A. Grudowski, A. L. Holmes, C. J. Eiting and R. D. Dupuis, “Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates”, Appl. Phys. Lett., vol. 69, pp. 3626-3628, 1996.
[108] T. Someya, K. Hoshino and Y. Arakawa, “Misorientation-angle dependence of GaN layers grown on a-plane sapphire substrates by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 79, pp. 1992-1994, 2001.
[109] M. Fatermi, A. E. Wickenden, D. D. Koleske, M. E. Twigg, J. A. Freitas, Jr., R. L. Henry and R. J. Gorman, “Enhancement of electrical and structural properties of GaN layers grown on vicinal-cut, a-plane sapphire substrates”, Appl. Phys. Lett. vol. 73, pp. 608-610, 1998.
[110] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani and H. Morkoc, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy ”, Solid-State Electron., vol.42 pp. 839-847, 1998.
[111] D. Lu, D. I. Florescu, D. S. Lee, V. Merai, J. C. Ramer, A. Parekh and E. A. Armour, “Sapphire substrate misorientation effects on GaN nucleation layer properties”, J. Crystal Growth, vol. 272, pp. 353-359, 2004.
[112] D. C. Look, J. R. Sizelove, S. Keller, Y. F. Wu, U. K. Mishra and S. P. DenBaars, Solid State Commun., Vol. 102, pp. 297, 1997.
[113] W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo and W. Imler, “Activation energies of Si donors in GaN”, Appl. Phys. Lett., vol. 68, pp. 3144-3146, 1996.
[114] S. Yoshida, S. Misawa, and A. Itoh, “GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source”, Appl. Phys. Lett., vol.67, pp.1686-1688, 1995.
[115] S. Yoshida, S. Misawa, Y. Fuji, S. Tanaka, H. Hayakawa, S. Gonda, and A. Itoh, J. Vac. Sci. Tech. vol.16, pp.990, 1979.
[116] S. Yoshida, S. Misawa, and S. Gonda, “Properties of AlxGa1-xN films prepared by molecular beam epitaxy”, J. Appl. Phys., vol.53, pp.6844-6848, 1982.
[117] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates”, Appl. Phys. Lett., vol.42, pp.427-429, 1983.
[118] S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures”, J. Vac. Sci. Tech. B., vol.1, pp.250-253, 1983.
[119] R. C. Powell, N. E. Lee, and J. E. Greene, “Growth of GaN(0001) 11 on Al2O3(0001) by gas-source molecular beam epitaxy”, Appl. Phys. Lett., vol.60, pp.2505-2507, 1992.
[120] Z. Yang, L. K. Li, and W. I. Wang, “GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source”, Appl. Phys. Lett., vol.67, pp.1686-1688, 1995.
[121] Y. Moriyasu, H. Goto, N. Kuze, and M. Matsui, J. Cryst. Growth., vol.150, pp.916, 1995.
[122] W. Kim, O. Aktas, A. E. Botchkarev, A. Salvador, S. N. Mohammad, and H. Morkoc, “Reactive molecular beam epitaxy of wurtzite GaN: Materials characteristics and growth kinetics”, J. Appl. Phys., vol.79, pp.7657-7666, 1996.
[123] M. Kamp, M. Mayer, A. Pelzmann, A. Thies, H. Y. Chung, H. Sternschulte, O. Marti, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 395, pp.135, 1996.
[124] M. Kamp, M. Mayer, A. Pelzmann, and K. J. Ebeling, Mat. Res. Soc. Symp. Proc., 449, pp.161, 1997.
[125] N. Grandjean, J. Massies, P. Vennegues, M. Laugt, and M. Leroux, “Epitaxial relationships between GaN and Al2O3(0001) substrates”, Appl. Phys. Lett., vol.70, pp.643-645, 1997.
[126] N. Grandjean, M. Laugt, M. Leroux, and J. Massies, “Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers”, Appl. Phys. Lett., vol.71, pp.240-242, 1997.
[127] N. Grandjean, J. Massies, P. Vennegues, and M. Leroux, “Molecular-beam epitaxy of gallium nitride on (0001) sapphire sunstrates using ammonia”, J. Appl. Phys., vol.83, pp.1379-1383, 1998.
[128] O. Aktas, W. Kim, Z. Fan, A. Botchkorev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoc, “High transconductance normally-off GaN MODFETs”, Electron. Lett., vol.31, pp.1389-1390, 1995.
[129] T. J. Schmidt, W. Shan, J. J. Song, A. A. Salvador, W. Kim, O. Atakas, A. Botchkarev, and H. Morkoc, “Room-temperature stimulated emission in GaN/AlGaN separate confinement heterostructures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol.68, pp.1820-1822, 1996.
[130] H. Tang, J. B. Webb, J. A. Bardwell, S. Rolfe, and T. W. MacElwee, “Reproducibility of growing AlGaN/GaN high-electron-mobility-transistor heterostructures by molecular-beam epitaxy”, Solid-State Electron, vol.44, pp.2177-2182, 2000.
[131] M. Micovici, N. X. Nguyen, P. Janke, W. S. Wong, P. Hashimoto, L. M. McCray, and C. Nguyen, “GaN/AlGaN high electron mobility transistor with fT of 110GHz”, Electron. Lett., vol.36, pp.358-359, 2000.
[132] V. Kumar, W. Lu, R. Schwindt, J. Van Hove, P. Chow, and I. Adesida, “0.25 um gate-length, MBE-grown AlGaN/GaN HEMTs with high current and high fT”, Electron. Lett., vol.37, pp.858-859, 2001.