簡易檢索 / 詳目顯示

研究生: 方冠權
Fang, Kuan-Chuan
論文名稱: 奈米粒子的熱物性與應用研究
An investigation into the thermophysical properties and applications of nanoparticles
指導教授: 翁政義
Weng, Cheng-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 127
中文關鍵詞: 奈米粒子熱物性奈米粒子懸浮流體傳輸性質分子動力學模擬
外文關鍵詞: transport properties, nanoparticles suspensions, thermophysical properties, molecular dynamics simulations, nanoparticles
相關次數: 點閱:186下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文運用分子動力學模擬研究奈米粒子的熱物性與尺寸關係,並結合平行計算技巧探討奈米粒子懸浮流體的結構特性與傳輸性質。在奈米粒子模擬方面,所探討的物理性質包含內聚能、表面能、均方根位移(RMSD)、熔化溫度及熱傳導係數等;在奈米粒子懸浮流體模擬方面,所探討的製備參數包含粒子尺寸、粒子體積分率及溫度等。由奈米粒子的熱物理性質模擬結果可得,當矽奈米粒子的原子數目(N)大於357個時,粒子的熔化溫度與尺寸(N-1/3)呈線性關係,在原子數目為N=281與N=191模擬結果中,粒子的熔化溫度高於此線性關係預測的數值;矽奈米粒子在熔化溫度時的尺寸小於固態時的尺寸;矽奈米粒子的內聚能與尺寸(1/d,其中d為粒子的直徑)呈線性關係,且與溫度無關;小尺寸的矽奈米粒子具有較顯著的結構重組行為,較容易產生晶格缺陷;矽奈米粒子的熱傳導係數低於塊材數值約2個量級,且隨著溫度增加有明顯下降的趨勢。由奈米粒子懸浮流體的結構特性與傳輸性質模擬結果可得,液體會在固體粒子的表面附近形成有序結構殼層,並隨著粒子尺寸減小而變得更顯著;當粒子體積分率增加時,奈米粒子於流體中的懸浮穩定性亦隨之增加;當富勒烯(fullerene)碳球加入液態水中,水分子的擴散係數與富勒烯碳球加入量呈線性關係,與富勒烯碳球的尺寸無關;在非常微量的粒子加入基質流體中,對流體的黏滯係數增量效應有顯著增加趨勢,尤其在低溫的條件中更明顯;奈米粒子懸浮流體由模擬得到的熱傳導增量大於理論模型預測數值約1個量級;奈米粒子懸浮流體的熱傳導增量大致上可歸因於懸浮奈米粒子本身的熱傳特性及固液界面處形成有序結構,而改變固體粒子與液態流體間的熱阻。最後,我們提出一些分子動力學模擬的改進方法及奈米粒子的其他應用,作為今後研究的方向。

    This study investigates the thermophysical properties of nanoparticles with various sizes and the structural features and transport properties of nanoparticles suspensions using molecular dynamics simulations with parallel computing technique. The physical properties of nanoparticle in the simulation are including cohesive energy, surface energy, root mean square displacement (RMSD), melting temperature, and thermal conductivity. The composed parameters of nanoparticles suspensions in the simulation contain particle size, particle volume fraction, and temperature. From the simulated results about the thermophysical properties of nanoparticles, there exists a linear relation for the silicon nanoparticles with more than 357 atoms, within which the melting temperature of particle varies inversely as N-1/3, and the melting temperatures for particles with N=281 and 191 are both seen to be higher than the values predicted from linear fitting; the size of the silicon nanoparticle when it approaches its melting temperature is less than when it is in a solid state; the silicon nanoparticle cohesive energy can be fitted to a linear function of 1/d, where d is the particle diameter, and is independent of temperature; the small particle has a heavily reconstructed geometry, which easily generates lattice imperfections; the calculated thermal conductivities of the silicon nanoparticles are lower than that of the bulk by approximately two orders of magnitude, and decreases rapidly as the temperature increases. From the simulated results of the structural features and transport properties of nanoparticles suspensions, an organized structure shell of liquid is formed close to the surface of solid particle and the shell structure formation becomes more pronounced as the particle size is reduced; the suspension stability of nanoparticles is improved as the particle volume fraction is increased; the diffusion coefficient of the water molecules in fullerenes-in-water suspensions varies as a linear function of the fullerene loading, but is independent of the fullerene size; the dispersion of even a very small amount of particles in the base fluid leads to a significant increase in the viscosity enhancement effect, which is more pronounced at a lower temperature; the simulation results for the thermal conductivity enhancement of nanoparticles suspensions are approximately one order of magnitude higher than the predictions from the theoretical modes; the enhanced thermal conductivity of nanoparticles suspensions is most likely attributed to the nature of heat conduction in nanoparticles and an organized structure at the solid/liquid interface, thereby changing the barrier to heat flow between the solid particle and the liquid fluid. Finally, we present several improvement ways of molecular dynamics simulations, and other application of nanoparticles as our future works.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 符號說明 XV 第一章 緒論 1 1-1 奈米結構簡介 1 1-2 奈米粒子的特性與應用 2 1-3 研究動機與目的 9 1-4 分子動力學模擬研究奈米粒子文獻回顧 10 1-5 本文架構 12 第二章 分子動力學理論 14 2-1 分子動力學簡介 14 2-2 勢能函數 15 2-2-1 Lennard-Jones勢能 17 2-2-2 Stillinger-Weber勢能 18 2-2-3 Tersoff勢能 19 2-2-4 F3C勢能 20 2-3 運動方程式 22 2-3-1 Gear 預測修正演算法 22 2-3-2 Verlet演算法 25 2-3-3 Leap-Frog演算法 26 2-3-4 Velocity Verlet演算法 27 2-4 邊界條件 27 2-4-1 週期邊界條件 28 2-4-2 固定與自由邊界條件 29 2-5 溫度與壓力控制 30 2-6 熱力學性質與傳輸性質計算 35 第三章 分子動力學數值模擬方法 38 3-1 物理參數與無因次化 38 3-2 截斷半徑法 40 3-2-1 Verlet表列法 41 3-2-2 Cell link表列法 42 3-2-3 Verlet表列法結合Cell link表列法 44 3-3 平行計算方法 45 3-3-1 原子分散法 46 3-3-2 力分散法 47 3-3-3 空間分散法 49 第四章 模擬結果分析與討論 51 4-1 奈米粒子的熔化行為分析 51 4-2 奈米粒子的結構與熱傳導分析 66 4-3 奈米粒子懸浮流體的結構與擴散性質分析 78 4-4 奈米粒子懸浮流體的傳輸機制分析 90 第五章 結論與建議 104 5-1 結論 104 5-2 建議與未來展望 106 參考文獻 108 附錄 高速計算電腦叢集設備規格 125 自述 127

    [1] 張力德,牟季美,納米材料和納米結構,科學出版社,北京,2001。
    [2] National Nanotechnology Initiative: Leading to the next Industrial revolution, Committee on technology national science and technology council, Feb. 2000, Washingon, D. C., USA.
    [3] WTEC panel report on Nanostructure Science and Technology, International Technology Research Institute, Dec. 1998, Maryland, USA.
    [4] Y. Kanemitsu and Y. Fukunishi, Quantum confinement and Anderson localization of carriers in semiconductor nanoparticles: toward design of molecular electronics materials, Thin Solid Films, 393, 103 (2001).
    [5] S. G. Penn, L. Hey, and M. J. Natanz, Nanoparticles for bioanalysis, Current Opinion in Chemical Biology, 7, 609 (2003).
    [6] A. A. Lazarides, K. Lance Kelly, T. R. Jensen, and G. C. Schatz, Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors, Journal of Molecular Structure: Theochem, 529, 59 (2000).
    [7] O. Lazarenkova and A. Balandin, Miniband formation in a quantum dot crystal, Journal of Applied Physics, 89, 5509 (2001).
    [8] A. Khitun, J. Liu, and K. L. Wang, On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices, Applied Physics Letters, 84, 1762 (2004).
    [9] O. Masala and R. Seshadri, Magnetic properties of capped, soluble MnFe2O4 nanoparticles, Chemical Physics Letters, 402, 160 (2005).
    [10] K. Y. Mulyuko, R. Z. Valiev, G. F. Korznikova, and V. V. Stolyarov, The amorphous Fe sub(83)Nd sub(13)B sub(4) alloy crystallization kinetics and high coercivity state formation, Physica Status Solidi (A), 112(1), 137 (1989).
    [11] R. Kubo, Electronic Properties of Metallic Fine Particles. I., Journal of the Physical Society of Japan, 17, 975 (1962).
    [12] A. Kawabata and R. Kubo, Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption , Journal of the Physical Society of Japan, 21, 1765 (1966).
    [13] A. D. Yoffe, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Advances in Physics, 51, 799 (2002).
    [14] P. V. Kamat, Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles, Journal Physical Chemistry B, 106(32), 7729 (2002).
    [15] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78(6), 718 (2001).
    [16] D. L. Huffaker, G. Park, Z. Zou, O. B. Schekin, and D. G. Deppe, Characterization of catastrophic optical damage in Al-free InGaAs/InGaP 0.98 high-power lasers, Applied Physics Letters, 73, 2567 (1998).
    [17] J. L. Lin, Y. S. Tang, K. L. Wang, T. Radetic, and R. Gronsky, Raman scattering from a self-organized Ge dot superlattice, Applied Physics Letters, 74, 1863 (1999).
    [18] J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New York, 1992.
    [19] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
    [20] J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, 1990.
    [21] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991.
    [22] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
    [23] D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, 1990.
    [24] W. Eckstein, Computer Simulation of Ion-Solid interaction, Springer-Verlag, Berlin, 1991.
    [25] M. P. Allen et al., Computer Simulation in Chemical Physics, Series C: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, 1992.
    [26] M. Meyer et al., Computer Simulation in Material Science, Series E: Applied Sciences Vol. 205, Kluwer Academic, Dordrecht, 1991.
    [27] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79(14), 2252 (2001).
    [28] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Mechanism of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer, 45, 855 (2002).
    [29] S. Lee, S. U. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, International Journal of Heat and Mass Transfer, Transactions of ASME, 121, 280 (1999).
    [30] Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, International Journal of Heat and Mass Transfer, 21, 58 (2000).
    [31] P. K. Naicker, P. T. Cummings, H. Zhang, and J. F. Banfield, Characterization of titanium dioxide nanoparticles using molecular dynamics simulations, Journal of Physical Chemistry B, 109(32), 15243 ( 2005).
    [32] A. E. Galashev, I. A. Izmodenov, A. N. Novruzov, and O. A. Novruzova, Computer study of physical properties of silicon nanostructures, Semiconductors, 41(2), 190 (2007).
    [33] W. H. Qi, Study on size and shape effects of lattive parameter and cohesive energy of Pd nanoparticle, ACTA Metallurgica Sinica, 42(10), 1065 (2006).
    [34] Q. Zeng, X. Jiang, A. Yu, and G. Lu, Growth mechanisms of silver nanoparticles: a molecular dynamics study, Nanotechnology, 18, 035708 (2007).
    [35] S. Alavis and D. L. Thompson, Molecular dynamics simulations of the melting of aluminum nanoparticles, Journal of Physical Chemistry A, 110(4), 1518 (2006).
    [36] Y. Chushak and L.S. Bartell, Molecular dynamics simulations of the freezing of gold nanoparticles , The European Physical Journal D, 16, 43 (2001).
    [37] K. A. Fichthorn and Y. Qi, Molecular dynamics simulation of colloidal nanoparticle forces, Industrial&Engineering Chemistry Research, 45(16), 5477 (2006).
    [38] L. W. Li, D. Bedrov, and G. D. Smith, Water-induced interactions between carbon nanoparticles, Journal of Physical Chemistry B, 110(21), 10509 (2006).
    [39] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics, Journal of Chemical Physics, 18, 817 (1950).
    [40] S. Erkoc, Annual Reviews of Computational IX, World Scientific Publishing Company, Singapore, (2001).
    [41] H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations, Physics Reports, 325, 239 (2000).
    [42] R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London, 1997.
    [43] G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, Oxford University Press, London, 1987.
    [44] P. L. Huyskens et al., Intermolecular Forces, Springer-Verlag, Berlin, 1991.
    [45] M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, The Forces between Molecules, Oxford University Press, London, 1986.
    [46] F. H. Stillinger and T. A. Weber, Computer-simulation of local order in condensed phases of silicon, Physical Review B., 31, 5262 (1985).
    [47] Y. Yamaguchi and S. Maruyama, A molecular dynamics simulation of the fullerene formation process, Chemical Physics Letters, 286, 336 (1998).
    [48] K. W. Jacobsen, J. K. Norskov, and M. J. Puska, Interatomic interactions in the effective-medium theory, Physical Review B, 35, 7423 (1987).
    [49] M. S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, 29, 6443 (1984).
    [50] D. Tomanek, S. Mukherjee, and K. H. Bennemann, Simple theory for the electronic and atomic structure of small clusters, Physical Review B, 28, 665 (1983).
    [51] V. Rosato, M. Guillope, and B. Legrand, Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philosophical Magazine A, 59, 321 (1988).
    [52] F. Ercolessi, M. Parrinello, and E. Tosatti, Simulation of gold in the glue model, Philosophical Magazine A, 58, 213 (1988).
    [53] M. W. Finnis and J. E. Sinclair, A simple empirical n-body potential for transition metals, Philosophical Magazine A, 50, 45 (1984)
    [54] M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution, Journal of Physical Chemistry B, 101, 5051 (1997).
    [55] M. Levitt and A. Warshel, Computer simulation of protein folding, Nature, 253, 694 (1975).
    [56] M. Levitt, Effect of Proline Residues on Protein Folding, Journal of Molecular Biology, 145, 251 (1981).
    [57] A. MacKerell, Jr., D. Bashford, M. Bellott, R. Dunbrack, Jr., J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, Journal of Physical Chemistry B, 102, 3586 (1998).
    [58] J. Anderson, J. Ullo, and S. J. Yip, Molecular dynamics simulation of dielectric properties of water, Journal of Chemical Physics, 87, 1726 (1987).
    [59] T. I. Mizan, P. E. Savage, and R. M. Ziff, Temperature Dependence of Hydrogen Bonding in Supercritical Water, Journal of Physical Chemistry, 100(1), 403 (1996).
    [60] O. Teleman, and B. Jonsson, and S. Engstrom, A molecular dynamics simulation of a water model with intramolecular degrees of freedom, Molecular Physiology, 69, 193 (1987).
    [61] S. P. Ju, C. I.Weng, J. G. Chang, and C. C. Hwang, Topographic study of sputter-deposited film with different process parameters, Journal of Applied Physics, 89, 7825 (2002).
    [62] S. P. Ju, C. I.Weng, J. G. Chang, and C. C. Hwang, A molecular dynamics study of deposition rate dependence of film morphology in the sputtering process, Surface and Coatings Technology, 149, 135 (2002).
    [63] C. I. Weng, C. C. Hwang, C. L. Chang, J. G. Chang, and S. P. Ju, Molecular Dynamics Simulation of Thin Film Growth on Giant Magnetoresistance Corrugated Structures, Physical Review B 65, 195420 (2002).
    [64] H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, Journal of Chemical Physics, 72, 2384 (1980).
    [65] M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, 52, 7182 (1981).
    [66] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, Journal of Chemical Physics, 81, 3684 (1984).
    [67] S. Plimpton, Fast parallel algorithm for short-range molecular dynamics, Journal of Computational Physics, 117, 1 (1995).
    [68] V. E. Taylor, R. L. Stevens, and K. E. Arnold, Proceedings of Fifth Symposium on the Frontiers of Massively Parallel Computation, 156 (1994).
    [69] H. Saka, Y. Nishikawa and T. Imura., melting temperature of in particles embedded in an Al matrix, Philosophical Magazine A, 57, 895 (1988).
    [70] K. I. Moore, D. L. Zhang and B. Cantor, Solidification of Pb particles embedded in Al, Acta Metallurgica et Materialia., 38, 1327 (1990).
    [71] W. P. Halperin, Quantum size effects in metal particles, Review of Modern Physics, 58, 532 (1986).
    [72] S. G. Klose, P. S. Frankwicz, and H. J. Fecht, Specific heat and thermodynamics of liquid undercooled metals and bulk glass forming alloys, Material Science Forum, 179-181, 729 (1995).
    [73] Y. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard III, Melting and crystallization in Ni nanoclusters: The mesoscale regime, Journal of Chemistry Physics, 115(1), 385 (2001).
    [74] F. A. Lindemann, The Calculation of Molecular Vibration Frequencies, Physical Zeitschrift, 14, 609 (1910).
    [75] A. P. Horsfield and P. Clancy, A tight-binding molecular dynamics simulation of the melting and solidification of silicon, Modelling Simulation Material Science Engineer, 2, 277 (1994).
    [76] Alexandre A. Shvartsburg and Martin F. Jarrold, Solid Clusters above the Bulk Melting Point, Physical Review Letters, 85, 2530 (2000).
    [77] Waseda Y, The Structure of Non-Crystalline Materials : Liquids and Amorphous Solids (New York : McGraw-Hill, 1980).
    [78] C. Messmer and J. C. Bilello, The surface energy of Si, GaAs, and GaP, Journal of Applied Physics, 52, 4623 (1981).
    [79] O. Lazarenkova and A. Balandin, Miniband formation in a quantum dot crystal, Journal of Applied Physics, 89, 5509 (2001).
    [80] A. Khitun, J. Liu, and K. L. Wang, On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices, Applied Physics Letters, 84, 1764 (2004).
    [81] T. J. Lenosky, J. D. Kress, I. Kwon, A. F. Voter, B. Edwards, D. F. Richards, S. Yang, and J. B. Adams, Highly optimized tight-binding model of silicon, Physical Review B, 55, 1528 (1997).
    [82] M. Ishimaru, Molecular-dynamics study on atomistic structures of amorphous silicon, Journal of Physics : Condensed Matter, 13, 4181 (2001).
    [83] L. Onsager, Reciprocal relations in irreversible processes I, Physical Review, 37, 405 (1931).
    [84] L. Onsager, Reciprocal relations in irreversible processes II, Physical Review, 38, 2265 (1931).
    [85] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in fortran, Cambridge University Press, 1992.
    [86] U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48, 53 (2003).
    [87] G. Stan, and M. W. Cole, Low coverage adsorption in cylindrical pores, Surface Science, 395, 280 (1998).
    [88] G. Stan, M. J. Bojan, S. Curtarolo, S. M. Gatica, and M. W. Cole, Uptake of gases in bundles of carbon nanotubes, Physical Review B, 62, 2173 (2000).
    [89] M. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics, Journal of Chemical Physics, 97, 1990 (1992).
    [90] U. Balucani, J. P. Brodholt, and R. Vallauri, Analysis of the velocity autocorrelation function of water, Journal of Physics: Condensed Matter, 8, 6139 (1996).
    [91] M. Hato, Attractive Forces between Surfaces of Controlled "Hydrophobicity" across Water: A Possible Range of "Hydrophobic Interactions" between Macroscopic Hydrophobic Surfaces across Water, Journal of Physical Chemistry, 100, 18530 (1996).
    [92] H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen, Journal of Physical and Chemical Reference Data, 3, 979 (1974).
    [93] O. Andersson, A. Soldatov, and B. Sundqvist, Thermal conductivity of C60 at pressures up to 1 GPa and temperatures in the 50-300 K range, Physical Review B, 54, 3093 (1996).
    [94] A. J. H. McGaughey and M. Kaviany, Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part I. Lennard-Jones Argon, International Journal of Heat and Mass Transfer, 47, 1783 (2004).
    [95] J. C. Maxwell, A Treatise on Electricity and Magnetism: 2nd ed. (Oxford University Press, Cambridge, 1904).
    [96] S. Y. Lu and H. C. Lin, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, Journal of Applied Physics, 79, 6761 (1996).
    [97] D. W. Brenner1, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 14, 783 (2002).
    [98] S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, Journal of Chemical Physics, 112(14), 6472 (2000).
    [99] J. Z. H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific Publishing Company, Singapore, 1999.
    [100] M. Shibahara and S. Kotake, Quantum molecular dynamics study on light-to-heat absorption mechanism: two metallic atom system, International Journal of Heat and Mass Transfer, 40(13), 3209 (1997).
    [101] M. Shiga, M. Tachikawa, and S. Miura, Ab inito molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics, Chemical Physics Letters, 332, 396 (2000).
    [102] O. Knospe and P. Jungwirth, Electron photodetachment in : Quantum molecular dynamics with a non-empirical, 'on-the-fly' calculated potential, Chemical Physics Letters, 317, 529 (2000).
    [103] M. Pavese, S. Jang, and G. A. Voth, Centroid molecular dynamics: A quantum dynamics method suitable for the parallel computer, Parallel Computing, 26, 1025 (2000).
    [104] L. Wang, A rigorous quantum molecular dynamics study of a collinear A + BC AB + C reaction, Chemical Physics, 237, 305 (1998).
    [105] J. Ka and S. Shin, Dynamics of molecular ion ( ) in condensed phases: hybrid quantum/classical method for a linear chain model, Chemical Physics Letters, 269, 227 (1997).
    [106] M. S. Selim, R. Seoudi, and A. A. Shabaka, Polymer based films embedded with high content of ZnSe nanoparticles, Materials Letters, 59, 2650 (2005).
    [107] W. H. Qi and M.P. Wang, Size- and shape-dependent superheating of nanoparticles embedded in a matrix, Materials Letters, 59, 2262 (2005).
    [108] S. Charvet, R. Madelon, and R. Rizk, Dielectric and photoluminescence properties of silicon nanoparticles embedded in a silica matrix, Microelectronics Reliability, 40, 855 (2000).

    下載圖示
    2009-08-06公開
    QR CODE