| 研究生: |
林天坤 Lin, Tien-Kun |
|---|---|
| 論文名稱: |
鋅系列II-VI族材料與應用於光電元件製作之研究 Study of Zn-base II-VI materials and their application of optoelectronic devices |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 氧化鋅 、硒化鋅 、分子束磊晶系統 、光傳導器 、發光二極體 、光偵測器 、歐姆接觸 |
| 外文關鍵詞: | photodetector, photoconductor, light emitting diode, MBE, ohmic contact, ZnSe, ZnO |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究以分子束磊晶(MBE)系統成長氧化鋅(ZnO)薄膜於氮化之藍寶石(sapphire)基板‚ x-ray繞射儀之半高寬(FWHM)低至452 arcsec‚且既陡峭又強烈之光致發光(PL)激發峰值位於3.238 eV‚這指出成長之ZnO薄膜結晶品質相當的好‚另外‚在入射波長為460nm時剛成長、500oC、600oC和700oC回火後之鑭(Ru)薄膜穿透率分別為56.8%、73.5%、79.6%和86.8%‚在回火後之Ru與底下之ZnO之間形成好的歐姆接觸‚僅僅只有2.72x10-4 Ω-cm2之特徵接觸電阻被取得在600oC回火之情形。然而‚以Ru為電極之蕭基(Schottky)二極體與金屬-半導體-金屬(MSM)光偵測器也被製作完成‚於Ru/ZnO介面之蕭基位障高度為0.76 eV‚此外‚ ZnO 光傳導器所量得之響應為0.054 A/W‚對應之量子效應為2.8%‚另ㄧ方面‚我們證明雜訊趨勢趨向於Johnson雜訊在較高頻區且獲得之正規劃檢測度為2.33x109 cmHz0.5W-1。
我們研究以MBE系統同質磊晶成長硒化鋅(ZnSe)薄膜於ZnSe基板上‚發現極強之ZnSe (004) x-ray峰值具有之半高寬21.5 arcsec‚ 光致發光(PL)與霍爾(Hall)量測也指出同質磊晶ZnSe薄膜之結晶品質相當的好‚另外‚以氧電漿處理同質磊晶p-ZnSe之鎳/金接觸特性也被研究‚發現與Se空缺或等電子(isoelectronic)氧雜質之島狀物顯現於15 W氧電漿處理之表面上‚且從此樣品中獲得最低之偏移電壓。
同質磊晶與異質磊晶ZnSe MSM偵測器兩者也被完成製作與特性分析‚同質磊晶ZnSe偵測器可以提供較低之暗電流與較高之光電流‚於入射波段為448 nm下‚同質磊晶與異質磊晶ZnSe MSM偵測器最大之響應度分別為0.128和0.045 A/W‚相對應之量子效率分別為36和12%‚再者‚我們取得同質磊晶ZnSe偵測器最低之雜訊等效功率(NEP)為7.6x10-13 W與最大之正規劃偵測度(D*)為9.3x1011 cmHz0.5W-1‚相對地‚異質磊晶ZnSe偵測器之NEP與D*分別為2.9x10-12 W與2.44x1011 cmHz0.5W-1‚此外‚以氧化銦錫(ITO)、鎢化鈦(TiW)與Ni/Au為電極之同質磊晶ZnSe偵測器也被完成製作‚ITO、TiW與Ni/Au對同質磊晶ZnSe之電子位障高度分別為0.66、0.695與0.715eV‚於入射波段為448 nm下‚以ITO、TiW與Ni/Au為電極之同質磊晶ZnSe偵測器最大之響應度分別為120、50.6和28.1 mA/W ‚相對應之量子效率分別為36和12%‚相對應之量子效率分別為33.5、14和8%‚以ITO、TiW與Ni/Au為電極之同質磊晶ZnSe偵測器之NEP分別為8.14x10-13、1.73x10-12與9.25x10-13 W‚且對應之D*分別為8.7x1011、4.09x1011與7.65x1011 cmHz0.5W-1。
以MBE系統同質磊晶成長II-VI族系列之發光二極體(LED)結構於導電的ZnSe基板上‚以便於成功地製作與證明ZnSe系列白光LED‚從電致發光(electroluminescence)譜分析‚從p-ZnSe/ZnCdSe MQW-n接面二極體之主動層放射主要的微綠-藍光於485 nm將被導電之ZnSe基板所吸收‚進而依次發散以中心為590 nm之強烈之橘色寬帶光譜‚因此‚放射光譜顯現肉眼能見到的冷白光‚在注入電流為20 mA下色度座標大約為x=0.41和y=0.36‚且啟動電壓低至3.2 V‚此外‚在注入電流為20 mA下典型元件之操作電壓與發光強度分別為4 V和超過100 mcd。
We investigated ZnO epitaxial films were grown on nitrided sapphire substrates by molecular beam epitaxy (MBE). The small x-ray diffraction full-width-half-maximum (FWHM) was 452 arcsec and sharp and strong excitonic related photoluminescence peak located at 3.238 eV indicates good crystal quality of our ZnO films. Further, with an incident wavelength of 460nm, transmittances of as-grown, 500oC-annealed, 600oC-annealed and 700oC-annealed Ru films were 56.8%, 73.5%, 79.6% and 86.8%, respectively. Good ohmic contacts were formed between the annealed Ru films and the underneath ZnO. With 650oC-annealing, we achieved a specific contact resistance of only 2.72x10-4 Ω-cm2. However, Schottky diodes and metal-semiconductor-metal (MSM) photoconductive detectors with Ru electrodes were also fabricated. Schottky barrier height at the Ru/ZnO interface was 0.76 eV. Further, the measured responsivity was 0.054 A/W, corresponding maximum quantum efficiency was calculated as 2.8% for the ZnO MSM photoconductive detector. On the other hand, we proved that the noise tendency towards Johnson noise in the high frequency region and achieved the normalized detectivity of 2.33x109 cmHz0.5W-1.
We investigated the homoepitaxial growth of ZnSe layers on ZnSe substrates by MBE. We could only observe an extremely strong ZnSe (004) x-ray peak with a full-width-half-maximum (FWHM) of 21.5 arcsec. Photoluminescence (PL) and Hall measurement also indicate that the quality of our homoepitaxial ZnSe layers is good. Further, contact properties of Ni/Au on homoepitaxial p-ZnSe with oxygen plasma treatments were also investigated. We observed hillocks, which were related to Se vacancies and/or isoelectronic oxygen impurities, on the surface of 15 W oxygen plasma treated sample. Furthermore, it was found that we could achieve lowest offset voltage from the sample treated with 15 W oxygen plasma.
Homoepitaxial and heteroepitaxial ZnSe MSM photodetectors were both fabricated and characterized. Homoepitaxial ZnSe MSM photodetector could provide us smaller dark current and large photocurrent. With an incident wavelength of 448 nm, the maximum responsivity for the homoepitaxial and heteroepitaxial ZnSe photodetectors were 0.128 and 0.045 A/W, which corresponds to a quantum efficiency of 36 and 12% respectively. Furthermore, we achieved the minimum noise equivalent power (NEP) of 7.6x10-13 W and the maximum normalized detectivity (D*) of 9.3x1011 cmHz0.5W-1 from our homoepitaxial ZnSe photodetector. In contrast, NEP and D* of the heteroepitaxial ZnSe photodetector were 2.9x10-12 W and 2.44x1011 cmHz0.5W-1, respectively. Furthermore, Homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au contact electrodes were also fabricated. Barrier heights for electrons were 0.66, 0.695 and 0.715eV for ITO, TiW and Ni/Au on the homoepitaxial ZnSe, respectively. With an incident wavelength of 448 nm, the maximum responsivities for the homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au contact electrodes were 120, 50.6 and 28.1 mA/W, which corresponds to quantum efficiencies of 33.5, 14 and 8% respectively. The NEP of homoepitaxial ZnSe MSM photodetectors with ITO, TiW and Ni/Au electrodes was 8.14x10-13, 1.73x10-12 and 9.25x10-13 W, respectively. Furthermore, the corresponding D* were 8.7x1011, 4.09x1011 and 7.65x1011 cmHz0.5W-1, respectively.
II-VI based light emitting diode (LED) structure was homoepitaxially grown on conductive ZnSe substrate by molecular beam epitaxy (MBE) so as to successfully fabricate and demonstrate a ZnSe based white LED. From electroluminescence spectra analysis, a portion of the main greenish-blue emission at 485 nm from the active layer of p-ZnSe/ZnCdSe MQW-n junction diode was absorbed by the conductive ZnSe substrate which in turn gave off a strong broad-band orange emission centered around 590 nm. As a result, an emission spectrum appears cold white to the naked eye with chromaticity coordinate of approximately x=0.41, y=0.36 at injected current of 20 mA. The turn-on voltage was low to 3.2 V. Further, the operating voltage and luminous intensity of a typical device was 4 V and more than 100 mcd with the injected current of 20 mA, respectively.
Chapter 1
[1] M.A. Haase, J. Qiu, J. M. DePuyde, H. Cheng, Appl. Phys. Lett., 59 (1991) 1272
[2] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectronics and Advanced Materials, Vol. 5, No. 4, December 2003, p. 899-902
[3] H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, Jpn. J. Appl.Phys. 30 (1991) L1620
[4] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, Appl. Phys. Lett. 86, 031112 (2005)
[5] M. Ehinger, C. Koch, M. Korn, D. Albert, J. Nurnberger, V. Hock,W. Faschinger, G. Landwehr, Appl. Phys. Lett. 73 (1998) 3562
[6] M. Liu and H. K. Kim, Appl. Phys. Lett. Vol.84, No. 2, 12 Jan 2004
[7] J. L. Pau, C. Rivera, E. Muñoz, E. Calleja, U. Schühle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, J. Appl. Phys., Vol. 95, No. 12, 15 June 2004.
[8] A. Bouhdada, M. Hanzaz, F. Viguê, J. P. Faurie, Appl. Phys. Lett., Vol. 83, No. 1, 7 July 2003.
[9] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, IEEE Electron Device Lett., vol. 25, no. 9, pp. 593-595, Sep. 2004.
[10] J. H. Edgar, Properties of Group III Nitrides, 1994 (London: INSPEC)
[11] M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433, 1996
[12] M. N. Yoder, IEEE Trans. Electron Devices, 43, 1633, 1996
[13] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys. 86, 1, 1999
[14] D. M. Brown, E. T. Downey, M. Ghezzo, J. W. Kretchmer, R. J. Saia, Y. S. Liu, J. A. Edmond, G. Gati, J. M. Pimbley, and W. E. Schneider, IEEE Trans. Electron Devices, vol. 40, pp. 325–331, 1993.
[15] Y. A. Goldberg, Semicond. Sci. Technol., vol. 14, pp. R41–R60, 1999.
[16] J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, IEEE Trans. Electron Devices, vol. 46, pp. 1326–1331, 1999.
[17] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, and M. A. Khan, Appl. Phys. Lett., vol. 70, pp. 2277–2279, 1997.
[18] “APA optics offers gallium nitride UV detectors,” Compound Semiconductor, vol. 4, no. 2, p. 10, 1998.
[19] J. D. Brown, J. Boney, J. Matthews, P. Srinivasan, J. F. Schetzina, T. Nohava, W. Yang, and S. Krishnankutty, MRS Internet J. Nitride Semicond. Res., vol. 5, no. 6, 2000.
[20] F. Viguê, P. de Mierry, J. -P. Faurie, E. Monroy, F. Calle, E. Muñoz, Electron. Lett., Vol. 36, No. 9, 27th April 2000.
[21] S. J. Chang, Y. K. Su, W. R. Chen, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu, U. H. Liaw, IEEE Photon. Technol. Lett., Vol. 14, No. 2, February 2002.
[22] Y. -M. Yu, S. Nam, Byungsong. O, K. -S. Lee, P. Y. Yu, Jongwon. Lee, Y. D. Choi, J. Crystal Growth, 243, pp. 389-395, 2002
[23] X. G. Zhang, A. Rodriguez, P. Li, F. C. Jain, and J. E. Ayers, J. Appl. Phys., Vol. 91, No. 6, 15 March 2002.
[24] H. Li, W. Jie, J. Crystal Growth, 257, pp. 110-115, 2002
[25] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J, Appl. Phys., Vol. 96, No. 12, pp.7036-7044, 15 December 2004.
[26] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., Vol. 42, pp. L1002-L1005, Part 2, No. 8B, 15 August 2003.
[27] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., Vol. 83, No. 23, pp.4719-4721, 8 December 2003.
[28] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE Int. Soc. Opt. Eng. 5560, 235 (2004)
[29] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal Growth, 225 (2001) 110-113.
[30] A. Mang, K. Reimann and St. Rübenacke, Solid State Communications, Vo. 94, No. 4, pp. 251-254, 1995.
[31] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., Vol. 96, No. 7, pp.3763-3768, 1 October 2004.
[32] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., Vol. 82, No. 22, pp.3901-3903, 2 June 2003.
[33] K. Sakurai, D. Iwata, S. Fujita and S. Fujita, Jpn. J. Appl. Phys., Vol. 38, pp. 2606-2608, Part 1, No. 4B, April 1999
[34] H. J. Ko, Y. Chen, S. K. Hong and T. Yao, J. Crystal Growth, 209 (2000) 816-821.
[35] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven and D. C. Look, Appl. Phys. Lett., Vol. 79, No. 19, pp.3074-3076, 5 November 2001.
[36] E. H. C. Parker, Plenum, New York 1985.
[37] A. Y. Cho and J. R. Arthur, prog. Solid State Chem. 10, 157 (1975)
[38] N. Matsunaga, T. Susuki, and K. Takahashi, J. Appl. Phys. 49, 5110 (1978)
[39] J. C. Bean, and R. Dingle, Appl. Phys. Lett. 35, 925 (1979)
[40] R. Hechingbottom, G. J. Davies, and K. A. Prior, Surf. Sci. 132, 375 (1983)
[41] P. Bhattacharya, Semiconductor Optoelectronic Devices, 1994 (Englewood Cliffs, NJ: Prentice Hall)
[42] A. Rogalski, SPIE Optical Engineering Press, 1995 Infrared Photon Detectors (Washington, 1995).
[43] S. M. Sze, Physics of Semiconductor Devices, 1981 (New York: Wiley)
[44] I. Hayashi, M.B. Panish, J. Appl. Phys. 41 (1970) 150.
[45] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687
[46] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett. 69 (1996)
[47] T. Mukai, S. Nakamura, Oyobuturi 68 (1999) 152
[48] T. Mukai, K. Takekawa, S. Nakamura, Jpn. J. Appl. Phys. 37 (1998) L839
[49] K. Katayama, H. Yao, F. Nakanishi, H. Doi, A. Saegusa, N. Okuda, T. Yamada, H. Matsubara, M. Irikura, T. Matsuoka, T. Takebe, S. Nishine, T. Shirakawa, Appl. Phys. Lett. 73 (1998) 102
[50] S.L. Chuang, A. Ishibashi, S. Kijima, N. Nakayama, M. Ukita, S. Taniguchi, IEEE J. Quantum Electron. 33 (1997) 970
[51] S. Guha, H. Cheng, M.A. Haase, J.M. DePuydt, J. Qiu, B.J. Wu, G.E. Hofer, Appl. Phys. Lett. 65 (1994) 801
Chapter 2
[1] I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma and M. Kawasaki: Surf. Sci. 443 (1999) L1043.
[2] K. Nakahara, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger and S. Niki: J. Cryst. Growth 227/228 (2001) 923.
[3] X. L. Du, M. Murakami, H. Iwaki and A. Yoshikawa: Phys. Status Solidi (a) 192 (2002) 183.
[4] A. Yoshikawa and K. Xu: Proc. 8th IUMRS-ICEM2002, Xi’an, China, 2002, to be published in Opt. Mater. 20 (2002).
[5] N. Grandjean, J. Massies and M. Leroux: Appl. Phys. Lett. 69 (1996) 2071.
[6] R. D. Vispute, V. Talyamsky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G.Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Lliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348 (1998).
[7] Th. Pauporté and D. Lincot, Appl. Phys. Lett. 75, 3817 (1999).
[8] A. Yoshikawa and K. Takahashi: Phys. Status Solidi (a) 188 (2001) 625.
[9] A. Yoshikawa, K. Xu, Y. Taniyasu and K. Takahashi: Phys. Status Solidi (a) 190 (2002) 33.
[10] T. Yamaguchi, T. Araki, Y. Saito, K. Kano, H. Kanazawa, Y. Nanishi, N. Teraguchi and A. Suzuki: J. Cryst. Growth 237 (2002) 993.
[11] K. Balakrishnan, H. Okumura and S. Yoshida: J. Cryst. Growth 189/ 190 (1998) 244.
[12] N. Grandjean, J. Massies, P. Vennegues, M. Laugt and M. Leroux: Appl. Phys. Lett. 70 (1997) 643.
[13] V. Ramachandran, R. M. Feenstra, W. L. Sarney, L. Salamanca-Riba, J. E. Northrup, L. T. Romano, and D. W. Greve, Appl. Phys. Lett. 75, 808 (1999).
Chapter 3
[1] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J, Appl. Phys., Vol. 96, No. 12, pp.7036-7044, 15 December 2004.
[2] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., Vol. 42, pp. L1002-L1005, Part 2, No. 8B, 15 August 2003.
[3] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., Vol. 83, No. 23, pp.4719-4721, 8 December 2003.
[4] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE Int. Soc. Opt. Eng. 5560, 235 (2004)
[5] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal Growth, 225 (2001) 110-113.
[6] A. Mang, K. Reimann and St. Rübenacke, Solid State Communications, Vo. 94, No. 4, pp. 251-254, 1995.
[7] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., Vol. 96, No. 7, pp.3763-3768, 1 October 2004.
[8] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Phys. Lett., Vol. 82, No. 22, pp.3901-3903, 2 June 2003.
[9] K. Sakurai, D. Iwata, S. Fujita and S. Fujita, Jpn. J. Appl. Phys., Vol. 38, pp. 2606-2608, Part 1, No. 4B, April 1999
[10] H. J. Ko, Y. Chen, S. K. Hong and T. Yao, J. Crystal Growth, 209 (2000) 816-821.
[11] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven and D. C. Look, Appl. Phys. Lett., Vol. 79, No. 19, pp.3074-3076, 5 November 2001.
[12] J. K. Kim and J. L. Lee, J. Electrochem. Soc., 151 (3) G190-G195 (2004)
[13] H. W. Jang and J. L. Lee, J. Appl. Phys., Vol. 93, No. 9, pp. 5416–5421, 1 May 2003.
[14] R. E. Hummel, Electronic Properties of Materials, Springer, Berlin, 1992, p. 373.
[15] H. Norde, J. Appl. Phys., Vol. 50, No. 7, pp. 5052–5053, 1979.
[16] K. E. Bohlin, J. Appl. Phys., Vol. 60, No. 3, pp. 1223–1224, 1986.
[17] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., 96, 12 (2004).
[18] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys. Lett., 42, L1002 (2003).
[19] H. K. Kim, S. H. Han, T. Y. Seong and W. K. Choi, J. Electrochem. Soc., 148, G114 (2001)
[20] H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong and I. Adesida, J. Appl. Phys., 94, 4225 (2003).
[21] T. Akane, K. Sugioka and K. Midorikawa, J. Vac. Sci. & Technol. B, 18, 1406 (2000)
[22] J. K. Kim and J. L. Lee, J. Electrochem. Soc., 151, G190 (2004)
[23] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton and S. J. Pearton, Appl. Phys. Lett., Vol. 84, No. 4, pp. 544-546, 26 January 2004
[24] D. Seghier and H. P. Gislason, J. Crystal Growth, Vol. 214: pp. 511-515, June 2000
[25] G. J. Hu, L. Zhang L, N. Dai, L. Y. Chen and M. C. Tamargo, Solid State Communications, Vol. 111, No. 11, pp. 631-634, 1999
[26] S. M. Sze, “ Semiconductor Devices Physics and Technology”, 1936.
[27] S. Salvatori, M. C.Rossi, F. Galluzzi, E. Pace, P. Ascarelli, M.Marinelli, , Diamond and Related Materials, Vol 7,pp.811-816, 1998.
[28] J. T. Xu, D. You, Y. W. Tang, Y. Kang, X. Li, X. Y. Li and H. M. Gong, Appl. Phys. Lett. 88 (2006) 072106.
[29] M. Salis, A. Anedda, F. Quarati, A. J. Blue and W. J. Cunningham, J. Appl. Phys. 97 (2005) 033709.
[30] B. Poti, A. Passaseo, M. Lomascolo, R. Cingolani and M. De Vittorio, Appl. Phys. Lett. 85 (2004) 6083.
[31] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi, J. Crystal Growth 281 (2005) 513.
[32] D. Basak, G. Amin, B. Mallik, G. K. Paul, S. K. Sen, Journal of Crystal Growth, Vol.256, pp.73-77, 2003.
[33] Parmanand Sharma and K. Sreenivas, K. V. Rao, Journal of Applied Physics, Vol.93, NO.7, 1 April 2003.
[34] S. J. Young, L. W. Ji., S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, X. L. Du and Q. K. Xue, Sensors and Actuators A:Physical, 2006.
[35] T. G. M. Kleinpenning, Solid-State Electron. 22 (1979) 121.
[36] F. N. Hooge, Physica 60 (1972) 130
[37] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu and J. Yang, Electron. Lett. 37 (2001) 720
[38] L. Anghel, T. Ouisse, T. Billon, P. Lassagne and C. Jaussaud, Semicond. Conf. International 2 (1996) 539
[39] E. L. Dereniak and D. G. Crowe, “Introduction to Optical Detectors”, Wiley 1984
Chapter 4
[1] Y. -M. Yu, S. Nam, Byungsong. O, K. -S. Lee, P. Y. Yu, Jongwon. Lee, Y. D. Choi, J. Crystal Growth, 243, pp. 389-395, 2002
[2] X. G. Zhang, A. Rodriguez, P. Li, F. C. Jain, and J. E. Ayers, J. Appl. Phys., Vol. 91, No. 6, 15 March 2002.
[3] H. Li, W. Jie, J. Crystal Growth, 257, pp. 110-115, 2002 [4] F. N. Hooge, Physica 60 (1972) 130
[4] J. S. Song, J. H. Chang, D. C. Oh, J. J. Kim, M. W. Cho, H. Makino, T. Hanada, T. Yao, Journal of Crystal Growth, 249, pp. 128-143, 2003
[5] O. de Melo, L. Hernández, M. Meléndez-Lira, Z. Rivera-Alvarez, I. Hermández-Calderón, SBMO/IEEE MTT-S IMOC’95 Proceedings, pp. 455-459, 1995.
[6] A. Bouhdada, M. Hanzaz, F. Vigue and J. P. Faurie, Appl. Phys. Lett. 83 (2003) 171.
[7] E. Monroy, F. Vigue, F. Calle, J. I. Izpura, E. Munoz and J. P. Faurie, Appl. Phys. Lett. 77 (2000) 2761
[8] J. L. Pau, C. Rivera, E. Muñoz, E. Calleja, U. Schühle, E. Frayssinet, B. Beaumont, J. P. Faurie and P. Gibart, J. Appl. Phys. 95 (2004) 8275
[9] F. Vigue, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle and E. Munoz, Electron. Lett. 36 (2000) 826
[10] Y. M. Yu, S. Nam, Byungsong. O, K. S. Lee, P. Y. Yu, J. W. Lee and Y. D. Choi, J. Crystal Growth 243 (2002) 389
[11] K. Ohkawa, T. Karasawa and T. Mitsuyu, Jpn. J. Appl. Phys. Lett. 30 (1991) L152
[12] A. Rinta-Moykky, P. Uusimaa, S. Suhonen, M. Valden, A. Salokatve, M. Pessa and J. Likonen, J. Vac. Sci. Technol. A 17 (1999) 374.
[13] Y. Fan, J. Han, L. He, J. Saraie, R. L. Gunshor, M. Hagerott, H. Jeon, A. V. Nurmikko, G. C. Hua and Y. Otsuka, Appl. Phys. Lett. 61 (1992) 3161
[14] Y. Lansari, J. Ren, B. Sneed, K. Bowers, J. Cook, Jr. and A. Schetzina, Appl. Phys. Lett. 61 (1992) 2554
[15] F. Vigué, P. Brunet, P. Lorenzini, E. Tournié and J. P. Faurie, Appl. Phys. Lett. 75 (1999) 3345
[16] J. J. Fijol, J. T. Trexler, L. Calhoun, R. Park and P. H. Holloway, J. Vac. Sci. Technol. 14 (1996) 159
[17] Y. Lansari, J. Ren, B. Sneed, K. Bowers, J. Cook and J. Schetzina, Appl. Phys. Lett. 61 (1992) 2554
[18] K. Akimoto, T. Miyajima and Y. Mori, Phys. Rev. B 39 (1989) 3138.
[19] S. M. Sze, D. J. Coleman, Jr., and A. Loya, Solid-State Electron. 14, 1209 (1979)
[20] W. C. Koscielniak, J.-L. Pelouard, R. M. Kolbas, and M. A. Littlejohn, IEEE Trans. Electron Devices 37, 1623 (1990)
[21] H. S. Fresser, F. E. Prins, and D. P. Kern, J. Vac. Sci. Technol. B 13, 2553 (1995)
[22] W. Wohlmuth, M. Arafa, A. Mahajan, P. Fay and I. Adesida, Appl. Phys. Lett, vol. 69, no. 23, pp. 3578-3580, 2 December 1996.
[23] H. Hong, W. A. Anderson, IEEE Trans. Electron. Dev., Vol. 46, No. 6, pp. 1127-1134, June 1999.
Chapter 5
[1] A. Gerhard, J. Nürnberg, K. Schüll, V. Hock, C. Schumacher, M. Ehinger, and W. Faschinger, J. Cryst. Growth, vol. 184/185, pp. 1319–1323, 1998.
[2] H. Hong, W. A. Anderson, J. Haetty, E. H. Lee, H. C. Chang, M. H. Na, H. Luo, and A. Petrou, J. Appl. Phys., vol. 84, pp. 2328–2333, 1998.
[3] M. Ehinger, C. Koch, M. Korn, D. Albert, J. Nürnberg, V. Hock, W. Faschinger, and G. Landwehr, Appl. Phys. Lett., vol. 73, pp. 3562–3564, 1998.
[4] J. Siess, G. Reuscher, P. Grabs, H.-J. Lugauer, T. Schallenberg, M. Ehinger, A.Waag, and G. Landwehr, J. Cryst. Growth, vol. 201/202, pp. 965–967, 1999.
[5] I. K. Sou, Z. H. Ma, Z. Q. Zhang, and G. K. L. Wong, Appl. Phys. Lett., vol. 76, pp. 1098–1100, 2000.
[6] Z. H. Ma, I. K. Sou, K. S. Wong, Z. Yang, and G. K. L. Wong, Appl. Phys. Lett., vol. 73, pp. 2251–2253, 1998.
[7] I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong, and G. K. L. Wong, Appl. Phys. Lett., vol. 78, pp. 1811–1813, 2001.
[8] S. T. Hsu, IEEE Trans. Electron. Dev. 18 (1971) 882
[9] T. G. M. Kleinpenning, Solid-State Electron. 22 (1979) 121
[10] F. Vigue, E. Tournie and J. P. Faurie, IEEE J. Quan. Electron. 37 (2001) 1146
[11] F. N. Hooge, Physica 60 (1972) 130
[12] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu and J. Yang, Electron. Lett. 37 (2001) 720
[13] L. Anghel, T. Ouisse, T. Billon, P. Lassagne and C. Jaussaud, Semicond. Conf. International 2 (1996) 539
[14] D. Seghier and H. P. Gislason, J. Crystal Growth, vol. 214, pp. 511-515, Jun. 2000.
[15] G. J. Hu, L. Zhang, L. N. Dai, L. Y. Chen and M. C. Tamargo, Solid State Commun., Vol. 111, no. 11, pp. 631-634, 1999.
[16] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, Appl, Phys. Lett., Vol. 72, No. 25, 22 June 1998.
[17] T. L. Smith, H. Cheng, S. K. Mohapatra and J. E. Potts, J. Vac. Sci. Technol. B, 5, 1326 (1987)
[18] K. Akimoto, T. Miyajima and Y. Mori, Phys. Rev. B, Vol. 39, No. 5, pp. 3138-3144, 15 February 1989.
[19] K. Sugiyama, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys., Vol. 87, No. 1, 1 January 2000.
[20] W. Wohlmuth, M. Arafa, A. Mahajan, P. Fay and I. Adesida, Appl. Phys. Lett, vol. 69, no. 23, pp. 3578-3580, 2 December 1996.
[21] H. Hong, W. A. Anderson, IEEE Trans. Electron. Dev., Vol. 46, No. 6, pp. 1127-1134, June 1999.
[22] F. Vigue, E. Tournie and J. P. Faurie, IEEE J. Quan. Electron., Vol. 37, No. 9, pp. 1146-1152, September 2001.
[23] O. Jantsch., IEEE Trans. Electron. Dev., ED-34 1100, 1987.
[24] A. L. McWhorter, Semiconductor Surface Physics, edited by R. H. Kinston (University of Pennsylvania Press, Philadelphia, 1957), pp.207-228
[25] G. Reimbold, IEEE Trans. Electron Dev., 31, 1190, 1984
[26] W. He and Z. Çelik-Butler, J. Vac. Sci. Technol. B, 11, 1833, 1993
Chapter 6
[1] Z. Li, Z. Yang, X. Ding, G. Zhang, Y. Feng, B. Guo, and H. Niu, Proc. SPIE Int. Soc. Opt. Eng. 5632, 262 (2005)
[2] C. H. Chen, S. J. Chang, and Y. K. Su, phys. stat. sol. (c) 0, No. 7, 2257–2260 (2003)
[3] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, Jpn. J. Appl. Phys., Part 2 41, L371 (2002)
[4] M. Yamada, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys., Part 2 41, L246 (2002)
[5] Y. Ohno, Proc. SPIE Int. Soc. Opt. Eng. 5530, 88 (2004)
[6] M. Shatalov, S. Wu, V. Adivarahan, W. H. Sun, A. Chitnis, J. Yang, Yu. Bilenko, R. Gaska, and M. A. Khan, phys. stat. sol. (c) 2, No. 7, 2832-2835 (2005)
[7] T. Mukai, S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 5735 (1999)
[8] T. Mukai, K. Takekawa, S. Nakamura, Jpn. J. Appl. Phys. 37 (1998) L839.
[9] H. Wenisch, K. Schüll, T. Behr, D. Hommel, G. Landwehr, D. Siche, P. Rudolph, H. Hartmann, J. Crystal Growth 159 (1996) 26.
[10] K. Ohkawa, M. Behringer, H. Wenisch, M. Fehrer, B. Jobst, D. Hommel, M. Kuttler, M. Strassburg, D. Bimberg, G. Bacher, D. ToK nnies, A. Forchel, Phys. Stat. Sol. B 202 (1997) 683.
[11] K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, T. Shirakawa, Journal of Crystal Growth,214/215 (2000) 1064-070
[12] H. Wenisch, M. Fehrer, M. Klude, K. Ohkawa, D. Hommel, Journal of Crystal Growth, 214/215 (2000) 1075-1079
[13] G. Jones, J. Woods, J. Lumin. 9 (1974) 389
[14] M. Yamada, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys., Part 2 41, L246 (2002)
Chapter 7
[1] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto, Appl. Phys. Lett. 73 (1998) 1038.
[2] M. Wraback, H. Shen, S. Liang, Y. Lu, Appl. Phys. Lett. 74 (1999) 507.
[3] Ying Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, J. Electron. Mater. 29 (2000) 69.
[4] H. Fabricius, T. Skettrup, P. Bisgaard, Appl. Opt. 25 (1986) 2764.
[5] A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas’ko, Semiconductors 6, 1183 (1975).
[6] I. T. Drapak, Semiconductors 2, 624 (1968).
[7] H. Hosono, H. Ohta, K. Hayashi, M. Orita, and M. Hirano, J. Cryst. Growth 237-239, 496 (2001).
[8] S. Fujishima, H. Ishiyama, A. Inoue, H. Ieki, Proceedings of the 1976 IEEE International Frequency Control Symposium, 1976, p. 119.
[9] T.M. Grundkowski, J.F. Black, G.W. Drake, D.E. Cullen, Proceedings of the 1982 IEEE International Frequency Control Symposium, 1982, p. 537.
[10] F. Moller, W. Buff, Proceedings of the 1992 IEEE Ultrasonics Symposium, 1992, p. 245.
[11] Y. Kim, W.D. Hunt, F.S. Hickernell, R.J. Higgins, C.K. Jen, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 42 (1995) 351.
[12] J. Koike, H. Tanaka, H. Ieki, Jpn. J. Appl. Phys. 34 (1995) 2678.
[13] N.W. Emanetoglu, S. Liang, C.R. Gorla, Y. Lu, Proceedings of the 1997 IEEE Ultrasonics Symposium, 1997, p. 195.
[14] T. Shirasawa, T. Honda, F. Koyama, and K. Iga, Mater. Res. Soc. Symp. Proc. 449, 373 (1997).
[15] D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed. (Chemical Rubber, Boca Raton, FL, 1994), p. 5-4.
[16] M.A. Hasse, J. Qui, J. DePuydt, H. Cheng, Appl. Phys. Lett. 59 (1991) 1272.
[17] H. Okuyama, S. Itoh, E. Kato, M. Ozawa, N. Nakayama, M. Ikeda, A. Ishibashi, M. Mori, Electron Lett. 30 (1991) 1488.
[18] E. Kato, N. Noguchi, M. Nagai, H. Okuyama, S. Kijima, A. Ishibashi, Electron Lett. 34 (1998) 282.
[19] N. Nakayama, S. Itoh, H. Okuyama, M. Ozawa, T. Ohata, K. Nakano, M. Ozawa, M. Ikeda, A. Ishibashi and Y. Mori, Electron. Lett. 29 (1993) 2194.
[20] A. Salokatve, H. Jeon, J. Ding, M. Hovinen, A. V. Nurmikko, D. C. Grillo, Li He, J. Han, Y. Fan, M. Ringle, R. L. Gunshor, G. C. Hua and N. Otsuka, Electron. Lett. 29 (1993) 2192.
[21] A. Ishibashi and S. Itoh, IEEE Lasers and Electro-Optics Society’s Annual Mwwting, Boston, MA, 1994.
[22]S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu and H.Cheng, Appl. Phys. Lett. 63 (1993) 3107
[23] G. C. Hua, N. Otsuka, D. C. Grillo, Y. Fan, J. Han, M. D. Ringle, R. L. Gunshor, M. Hovinen and A. V. Nurmikko, Appl. Phys. Lett. 65 (1994) 1331.
[24] S. Tomiya, E. Morita, M. Ukita, H. Okuyama, S. Itoh, K. Nakano and A. Ishibashi, Appl. Phys. Lett. 66 (1995) 1208.
[25] M. Hovinen, J. Ding, A. Salkatve, A. V. Nurmokko, G. C. Hua, D. C. Grillo, Li He, J. Han, M. Ringle and R. L. Gunshor, J. Appl. Phys. 77 (1995) 4150.
[26] G. M. Haugen, S. Guha, H. Cheng, J. M. DePuydt, M. A. Haase, G. H. Hofler, J. Qiu and B. J. Wu, Appl. Phys. Lett. 66 (1995) 358.
[27] M. Hovinen, J. Ding, A. V. Nurmikko, G. C. Hua, D. C. Grillo, Li He, J. Han and R. L. Gun shor, Appl. Phys. Lett. 66 (1995) 2013.