簡易檢索 / 詳目顯示

研究生: 施富元
Shih, Fu-Yuan
論文名稱: 最佳化設計節能玻璃並以壓印方式製作
Optimizing Energy-Saving Glass and Fabricating it with Nanoimprint Lithography
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 節能玻璃基因演算法全因子實驗法奈米微影製程
外文關鍵詞: energy-saving glass, Genetic algorithm, Full-factorial experiments, nanoimprint lithography
相關次數: 點閱:119下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣空調用電量占建築物總用電量 43%,照明用電量約佔 26%。加裝節能玻璃於建築物上是節約用電的有效方法之一,只是市面上節能玻璃有許多缺點,包括材料選擇性不高、設計參數不多以及玻璃變厚重等。因此,本研究在玻璃上製作奈米金屬結構作為節能玻璃,同時改善上述的缺點。此節能玻璃利用金屬材料、厚度、形狀及孔徑大小等組合,實現波長選擇性的效果,不僅設計參數更加多元化、玻璃增加的重量微乎其微,甚至能搭配市面上產品,達到更佳的節能效果。
    本研究分為設計、製作與量測三個部分:首先,使用基因演算法和全因子實驗設計節能玻璃;接著,透過奈米微影製程在玻璃上製作出金屬結構;最後,再量測正向入射的方向-方向及方向-半球穿透率,並針對頻譜上的特殊輻射性質,討論其物理機制。結果顯示,本研究製作出的樣本在紫外光區(波長 300 – 380 nm)的穿透率趨近於 0;在可見光區(波長 380 – 780 nm)的穿透率隨波長增加而逐漸上升,最高可達 0.69;在近紅外光區(波長 780 – 2500 nm)的穿透率隨著波長增加而逐漸遞減,最低可達0.14,主要影響頻譜特徵的物理機制有繞射現象和表面電漿共振。量測頻譜成功證實文中開發樣本具有減少紫外光與紅外光穿透進室內,並允許可見光通過的節能玻璃特性。

    Installing energy-saving glass in buildings is one of the effective methods to save electricity, but there are three disadvantages in commercial energy-saving glass: (1) the material selectivity is less; (2) the design parameters are few; (3) the glass becomes thick. In order to improve these disadvantages, the present study fabricates nanoscale metal structures on glass to form energy-saving glass. This energy-saving glass successfully presents wavelength-selectivity through metal material, thickness, shape, and pore size. It is not only having more design parameters than commercial products, but also increasing very little weight on glass. Moreover, it can be combined with commercial products to achieve better energy-saving effect.
    There are three steps in this study. First, using Genetic algorithm and Full-factorial experiments to design energy-saving glass. Second, fabricating metal structures on glass with nanoimprint lithography. Third, measuring its direction-directional and direction-hemispherical transmittance at normal incidence. The results show that: (1) the sample’s transmittance is close to zero in ultraviolet region (300 – 380 nm); (2) the sample’s transmittance is gradually increasing as wavelength increases in visible region (380 – 780 nm), and the maximum is 0.69; (3) the sample’s transmittance is gradually decreasing as wavelength increases in near infrared region (780 – 2500 nm), and the minimum is 0.14. The transmittance spectrum successfully confirm that the sample developed in this study have the property of energy-saving glass which reduces ultraviolet and infrared light into the room, but allows visible light pass through the indoor.

    摘要 i Abstract ii 誌謝 vii 目錄 viii 表目錄 x 圖目錄 xii 符號表 xv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目標 3 第二章 最佳化設計 4 2.1 太陽光輻射通量頻譜 4 2.2 適應函數 7 2.3 基因演算法 9 2.3.1 嚴格耦合波理論 9 2.3.2 基因演算法流程 15 2.3.3 最佳化結果 19 2.4 全因子實驗 22 2.4.1模型建置 22 2.4.2 設計流程與最佳化結果 23 第三章 節能玻璃樣本製作 39 3.1 翻模製程 39 3.2 金屬轉印製程 42 3.3 蝕刻製程 46 3.4 掀離製程 47 第四章 輻射性質量測 53 4.1 量測儀器介紹 53 4.1.1 傅立葉轉換紅外線光譜儀 53 4.1.2 可見光顯微光譜儀 57 4.1.3 紫外光光譜儀 61 4.1.4 半球輻射性質量測系統 63 4.2 節能玻璃樣本量測結果與討論 67 第五章 結論與未來工作 75 5.1 結論 75 5.2 未來工作 76 參考文獻 77

    [1] E. Oró, V. Depoorter, A. Garcia, and J. Salom, "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, vol. 42, pp. 429-445, 2015.
    [2] L. Suganthi, S. Iniyan, and A. A. Samuel, "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, vol. 48, pp. 585-607, 2015.
    [3] N. Izadyar, H. C. Ong, W. T. Chong, and K. Y. Leong, "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, vol. 62, pp. 908-923, 2016.
    [4] S. Luthra, S. Kumar, D. Garg, and A. Haleem, "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, vol. 41, pp. 762-776, 2015.
    [5] I. P. o. C. Change, "Climate Change 2014: Mitigation of Climate Change," 2014.
    [6] 台灣電力公司, "建築物節約能源簡介," 2012.
    [7] C.-C. Ho, Y.-B. Chen, and F.-Y. Shih, "Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy," International Journal of Thermal Sciences, vol. 102, pp. 17-25, 2016.
    [8] J. Zheng, S. Bao, and P. Jin, "TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions," Nano Energy, vol. 11, pp. 136-145, 2015.
    [9] Z. Liu, W. Xu, A. Lin, T. He, and F. Lin, "Deposition of NaGd(WO4)2:Eu3+/Bi3+ films on glass substrates and potential applications in white light emitting diodes," Energy and Buildings, vol. 113, pp. 9-14, 2/1/ 2016.
    [10] M. Ferrara, A. Castaldo, S. Esposito, A. D'Angelo, A. Guglielmo, and A. Antonaia, "AlN–Ag based low-emission sputtered coatings for high visible transmittance window," Surface and Coatings Technology, vol. 295, pp. 2-7, 6/15/ 2016.
    [11] S. S. John Carmody, Eleanor Lee, Dariush Arasteh, Todd Willmert, "Window Systems for High-Performance Buildings," 2004.
    [12] T. G. I. CORP. Vacuum Low-E Glass. Available: http://www.taiwanglass.com/product_list.php?sid=275
    [13] H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Optics Express, vol. 18, pp. 17922-17927, 2010/08/16.
    [14] R. Kotb, Y. Ismail, and M. A. Swillam, "Nonlinear tuning techniques of plasmonic nano-filters," Optics Communications, vol. 336, pp. 306-314, 2/1/ 2015.
    [15] M. Ayad and M. A. Swillam, "Submicron-integrated plasmonic power splitter," International Society for Optics and Photonics, vol. 8988, pp. 89880Y-89880Y-6, 2014,.
    [16] H. Zhongliang, M. Zhijun, P. Mingying, H. Xin, Z. Hang, L. Yang, et al., "Composite film polarizer based on the oriented assembly of electrospun nanofibers," Nanotechnology, vol. 27, p. 135301, 2016.
    [17] J. Song, H. Wu, Q. Cheng, and J. Zhao, "1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 158, pp. 136-144, 2015.
    [18] H. Ishihara, K. Masuno, M. Ishii, S. Kumagai, and M. Sasaki, "Power efficient microheater for wavelength selective infrared emitter and CO<inf>2</inf> gas sensing," in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 200-203, 2015.
    [19] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied Physics Letters, vol. 67, pp. 3114-3116, 1995.
    [20] J. Voskuhl, J. Brinkmann, and P. Jonkheijm, "Advances in contact printing technologies of carbohydrate, peptide and protein arrays," Current Opinion in Chemical Biology, vol. 18, pp. 1-7, 2014.
    [21] J. Li, L. Xu, C. W. Tang, and A. A. Shestopalov, "High-Resolution Organic Light-Emitting Diodes Patterned via Contact Printing," ACS Applied Materials & Interfaces, 2016/06/15.
    [22] V. Iyer, P. Murali, J. Paredes, D. Liepmann, and B. Boser, "Encapsulation of integrated circuits in plastic microfluidic systems using hot embossing," in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1822-1825, 2015.
    [23] J. Escarré, C. Battaglia, K. Söderström, C. Pahud, R. Biron, O. Cubero, et al., "UV imprinting for thin film solar cell application," Journal of Optics, vol. 14, p. 024009, 2012.
    [24] J. Chen, J. Cheng, D. Zhang, and S.-C. Chen, "Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces," Precision Engineering, vol. 44, pp. 70-74, 2016.
    [25] C. Riordan and R. Hulstron, "What is an air mass 1.5 spectrum? [solar cell performance calculations]," in Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, vol.2. , pp. 1085-1088, 1990.
    [26] PVEDUCATION.ORG. Standard Solar Spectra. Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
    [27] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Oxford, England: U Michigan Press, 1975.
    [28] N. Nguyen-Huu, J. Pistora, and M. Cada, "Design of Nanograting Structures for Optoelectronic Devices Based on Rigorous Coulpled-Wave Analysis," in Advanced Multimedia and Ubiquitous Engineering: Future Information Technology, H. J. J. Park, H.-C. Chao, H. Arabnia, and Y. N. Yen, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 343-350, 2015.
    [29] W. Martin, F. G. G. Dominic, and C. P. Nicolae, "Accurate near-field calculation in the rigorous coupled-wave analysis method," Journal of Optics, vol. 17, p. 125612, 2015.
    [30] X. Xiang and M. J. Escuti, "Numerical modeling of polarization gratings by rigorous coupled wave analysis," International Society for Optics and Photonics, vol. 9769, pp. 976918-976918-7, 2016.
    [31] Y. B. Chen and K. H. Tan, "The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters," International Journal of Heat and Mass Transfer, vol. 53, pp. 5542-5551, July 2010.
    [32] T. L. Bergman and F. P. Incropera, Fundamentals of heat and mass transfer: Wiley, Hoboken, NJ, 2011.
    [33] C. F. J. W. Rahul Mukerjee, A Modern Theory of Factorial Designs: Springer, 2006.
    [34] J. Antony, Design of Experiments for Engineers and Scientists, Second ed.: Elsevier, 2014.
    [35] I. 9050, "Glass in building - Determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and relatedglazing factors," Ethiopian Standards Agency2003.
    [36] T. G. I. CORP. Clear Float Glass. Available: http://www.taiwanglass.com/product_list.php?sid=193
    [37] T. G. I. CORP. TGI- Solarflex Reflective Glass Performance Data. Available: http://www.taiwanglass.com/userfiles/Reflective_Glass_2015.pdf
    [38] T. G. I. CORP. TGI-Low-E Insulating Glass Performance Data Available: http://www.taiwanglass.com/userfiles/Low-e_2015.pdf
    [39] P. U. K. Ltd. Pilkington K GlassTM Available: https://www.pilkington.com/en-gb/uk/products/product-categories/thermal-insulation/pilkington-k-glass-range#rangebrochures
    [40] C. G. Solutions. Planibel G low-e glass. Available: http://www.clearglass.com.au/glass-types/low-e-glass/planibel-low-e-glass
    [41] S. Xiao and N. A. Mortensen, "Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays," Optics Letters, vol. 36, pp. 37-39, 2011/01/01.
    [42] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 08/14/print 2003.
    [43] Z. M. Zhang, Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007.
    [44] J. Le Gall, M. Olivier, and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton," Physical Review B, vol. 55, pp. 10105-10114, 04/15/ 1997.

    下載圖示 校內:2021-08-09公開
    校外:2021-08-09公開
    QR CODE