| 研究生: |
周靖智 Chou, Ching-Chih |
|---|---|
| 論文名稱: |
聚醚碸-聚乙二醇共聚物的合成及作為鋰離子電池正極黏著劑之表現及模擬 Synthesis of Polyethersulfone-Polyethylene Glycol Copolymer and its Performance and Simulation as Lithium-ion Battery Cathode Binder. |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 鋰離子電池 、正極黏著劑 、PVDF 、PES-PEG共聚物 、分子模擬 |
| 外文關鍵詞: | lithium-ion battery, cathode binder, PVDF, PES-PEG copolymer, molecular simulation |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池是一種循環壽命長且具有高能量密度的二次電池,目前已廣泛應用於現今日常生活中的各種設備。在鋰離子電池的組成中,可分成正極、負極、電解液四個部分,其中在正極及負極的製作中皆須加入少量的黏著劑,才能使主要的電極材料發揮其優秀的性質。
目前廣泛運用於鋰離子電池正極的黏著劑為PVDF,它除了具有良好的機械強度及優異的耐化學腐蝕性外,還擁有寬廣的電化學窗口,因此非常適合用於鋰電池。然而PVDF本身分子間作用力弱且彈性低,較容易導致電極崩解而造成電容量的損失,加上本身結構中含有氟,在製造及回收上容易使氟流入到環境中造成環境的傷害。
為了降低PVDF的使用,本研究合成了含有PES及PEG重複單元的PES-PEG共聚物,並透過不同的反應物及反應物比例來調控PES和PES重複單元在共聚物中的分布及比例,接著將其運用在鋰離子電池的正極上。
本研究主要對比了使用0.5%的PES-PEG共聚物加上0.75%的PVDF以及僅使用1.25%的PVDF作為黏著劑在電池上的表現,其結果顯示當使用PES-PEG 1:8時,在電池的化成測試、C-rate測試及EIS測試上皆比單純使用PVDF的表現優異。此外本研究亦觀察到了在PES-PEG共聚物中,PES的數量在單一重複單元內較多時,其電池表現相對較差,而PEG在單一重複單元內的數量與電池表現的關係則較無趨勢性的相關,其原因可能與PES和PEG對鋰離子傳導的機制有關。此外本研究亦使用含有LiPF6的聚合物模擬系統計算PVDF及PES-PEG共聚物對鋰離子的影響,透過模擬計算中RDF及MSD的分析推測PES的作用力對鋰離子的影響應大於PVDF。
The choice of electrode binder significantly influences the performance of lithium-ion batteries, and currently, PVDF is commonly used as a binder in cathodes for lithium-ion batteries. To reduce the reliance on PVDF, this study synthesized a series of PES-PEG copolymers with varying ratios of PES and PEG repeat units and applied them to the cathodes of lithium-ion batteries. The main focus of this study was to compare the performance of using 0.5% PES-PEG copolymer combined with 0.75% PVDF to using only 1.25% PVDF as the binder in the battery. The results indicated that using PES-PEG 1:8 led to superior performance in formation tests, C-rate tests, and Electrochemical Impedance Spectroscopy tests compared to using PVDF alone. Additionally, the study observed that within the PES-PEG copolymer, a higher quantity of PES in a single repeat units resulted in relatively poorer battery performance, whereas the relationship between the quantity of PEG in a single repeat unit and battery performance appeared to be less trend-dependent, possibly due to the distinct mechanisms of lithium ion conduction through PES and PEG. Furthermore, the study employed a polymer simulation system containing LiPF6 to calculate the impact of PVDF and PES-PEG copolymers on lithium ions. Through simulations and analyses of radial distribution functions and mean square displacements, it was inferred that the influence of PES on lithium ion behavior was greater than that of PVDF.
[1] Adrian Saal, Tino Hagemann and Ulrich S. Schubert. Polymers for battery applications—active materials, membranes, and binders. Advance energy materials. 2020, 2001984.
[2] A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori and K. Zaghib. LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources. 2007, 163, 1047-1052.
[3] Hossein Maleki, Guoping Deng, Inna Kerzhner-Haller, Anaba Anani and Jason N. Howard. Thermal stability studies of binder materials in anodes for lithium-ion batteries. Journal of The Electrochemical Society. 2000, 147, 12, 4470-4475.
[4] S DEB. Degradable polymers and polymer composites for tissue engineering. Cellular Response to Biomaterials. 2009, 28-60.
[5] Payam Zarrintaj, Mohammad Reza Saeb, Seyed Hassan Jafari and Masoud Mozafari. Application of compatibilized polymer blends in biomedical fields. Compatibilization of polymer blends. 2020, 511-537.
[6] Yu Jiang , Xuemin Yan, Zhaofei Ma, Ping Mei, Wei Xiao, Qinliang You and Yan Zhang. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries Polymers. Polymers. 2018, 10, 1237.
[7] Penghui Yao, Haobin Yu, Zhiyu Ding, Yanchen Liu, Juan Lu, Marino Lavorgna, Junwei Wu and Xingjun Liu. Review on polymer-based composite electrolytes for lithium batteries. Frontiers in Chemistry. 2019, 7, 522.
[8] Zhenchuan Tian and Dukjoon Kim .Solid electrolyte membranes prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) with various functional end groups for lithium-ion battery. Journal of Membrane Science. 2021, 621, 119023.
[9] Tatyana Anokhina, Alisa Raeva, Stepan Sokolov, Alexandra Storchun, Marina Filatova, Azamat Zhansitov, Zhanna Kurdanova, Kamila Shakhmurzova, Svetlana Khashirova and Ilya Borisov. Effect of composition and viscosity of spinning solution on ultrafiltration properties of polyphenylene sulfone hollow-fiber membranes. Membranes. 2022, 12, 1113.
[10] Qingwen Lu, ianhua Fang, un Yang, Gengwei Yan, Sisi Liu and Jiulin Wang. A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. Journal of Membrane Science. 2013, 425-426, 105-112.
[11] Emna El Golli-Bennour, Bochra Kouidhi, Mouna Dey, Rabia Younes, Chayma Bouaziz, Chiraz Zaied, Hassen Bacha and Addellatif Achour. Cytotoxic effects exerted by polyarylsulfone dialyser membranes depend on different sterilization processes. International Urology and Nephrology. 2009.
[12] Abdelkader Benhalima, François Hudon, Finda Koulibaly, Christian Tessier and Josée Brisson. Polyethersulfone polymers and oligomers—Morphology and crystallization. Canadian Journal of Chemistry. 2012, 90, 880-890.
[13] Clélia Emin, Eliezer Kurnia, Iradani Katalia and Mathias Ulbricht. Polyarylsulfone-based blend ultrafiltration membranes with combined size and charge selectivity for protein separation. Separation and Purification Technology. 2018, 193, 127-138.
[14] Sung Ku Kwon and Do Hyun Kim. Effect of Process Parameters of UV-Assisted Gas-Phase Cleaning on the Removal of PEG (Polyethyleneglycol) from a Si Substrate. Journal of the Korean Physical Society. 2006, 49, 4, 1421-1427.
[15] Xue Zhigang, He Dan and Xie Xiaolin. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A. 2015, 3, 38, 19218–19253.
[16] Mengmeng Wang, Kang Liu, Jiadong Yu, Qiaozhi Zhang, Yuying Zhang, Marjorie Valix and Daniel C.W. Tsang. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Global Challenges. 2023, 2200237.
[17] Malte Kosfeld, Bastian Westphal and Arno Kwade. Correct water content measuring of lithium-ion battery components and the impact of calendering via Karl-Fischer titration. Journal of energy storage. 2022, 51, 104398.
[18] Hao Chen, Min Ling, Luke Hencz, Han Yeu Ling, Gaoran Li, Zhan Lin, Gao Liu and Shanqing Zhang. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chemical reviews. 2018, 118, 8936-8982.
[19] Xin-Bing Cheng, He Liu, Hong Yuan, Hong-Jie Peng, Cheng Tang, Jia-Qi Huang and Qiang Zhang. A perspective on sustainable energy materials for lithium batteries. Sustainable materials and technologies. 2021, 1, 38-50.
[20] 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽。儲能發展的勁旅─鋰離子電池。科學發展。2019年5月,557期,60-65。
[21] Mogalahalli V. Reddy, Alain Mauger, Christian M. Julien, Andrea Paolella and Karim Zaghib. Brief history of early lithium-battery development. Materials. 2020, 13, 1884.
[22] John Bannister Goodenough, Koichi Mizushima and Philip John Wiseman. Electrochemical Cell and Method of Making Ion Conductors for Said Cell. Eur. Patent EP0017400A1, 1979.
[23] Thackeray, M.M.; Johnson, P.J.; Depicciotto, L.A.; Bruce, P.G.; Goodenough, J.B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1984, 19, 179-187.
[24] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the electrochemical society. 1997, 4, 144, 1188-1194.
[25] C. Delmas and I. Saadoune. Electrochemical and physical properties of the LixNi1-yCoyO2 phases. Solid state ionics. 1992, 53-56, 370-375.
[26] Michel B. Armand and Michel Duclot. Electrochemical Generators for Producing Current and New Materials for Their Manufacture. U.S. Patent 4,303,748, 1981.
[27] Michel B. Armand and Michel Duclot. Ionically and Pref. Electronically Conductive Electrode—Comprising Agglomerate of Active Electrode Material and Solid Soln. of Ionic Cpd. in Polymer Pref. Polyoxyalkylene. French Patent 7,832,976, 22, 1978.
[28] M. Lazzari and B. Scrosati. A Cyclable lithium organic electrolyte cell based on two intercalation electrodes. Journal of electrochemical society. 1980, 127, 773-774.
[29] Xiang Chen, Haixia Li, Zhenhua Yan, Fangyi Cheng and Jun Chen. Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science china material. 2019, 62, 11, 1515-1536.
[30] Bin Zhu, Xinyu Wang, Pengcheng Yao, Jinlei Li and Jia Zhu. Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science. 2019, 10, 7132-7148.
[31] Dongmei Zhuang, Xianli Huang, Zhihui Chen, Haowen Wu, Lei Sheng, Manman Zhao, Yaozong Bai, Gaojun Liu, Hairong Xue, Tao Wang, Yonggang Chen and Jianping He. A novel artificial film of lithiophilic polyethersulfone for inhibiting lithium dendrite. Electrochimica Acta. 2022, 403, 139668.
[32] Yue Maa, Jun Ma and Guanglei Cuia. Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials. 2019, 20, 146-175.
[33] William L. Jorgensen and Julian Tirado-Rives. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. National Acad Science. 2005, 102, 6665-6670.
[34] Leela S. Dodda, Jonah Z. Vilseck, Julian Tirado-Rives, and William L. Jorgensen. 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. The Journal of Physical Chemistry B. 2017, 121, 3864-3870.
[35] Leela S. Dodda, Israel Cabeza de Vaca, Julian Tirado-Rives and William L. Jorgensen. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 2017, 45, W331-W336.
[36] William L. Jorgensen, David S. Maxwell and Julian Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society. 1996, 118, 11225-11236.
[37] Hsun-Sheng Liu, Kun-You Chena, Chan-En Fanga and Chi-cheng Chiu. Comparing the effects of polymer binders on Li+ transport near the liquid electrolyte/LiFePO4 interfaces: A molecular dynamics simulation. Electrochimica Acta. 2021, 375, 137915.
[38] D. Mohanty, E. Hockaday , J. Li, D.K. Hensley, C. Daniel and D.L. Wood III. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources. Journal of Power Sources. 2016, 312, 70-79.
[39] Zhian Zhang, Tao Zeng, Yanqing Lai, Ming Jia and Jie Li. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. Journal of Power Sources. 2014, 247, 1-8.
[40] 蘇昱帆、葉炯麟、陳弘源、張家欽。黏著劑於鋰離子電池之發展與應用。化工。2017年4月。64卷2期,49-56。
[41] Niranjanmurthi Lingappan, Lingxi Kong and Michael Pecht. The significance of aqueous binders in lithium-ion batteries. Renewable and Sustainable Energy Reviews. 2021, 147, 111227.
[42] Scott J. Weiner, Peter A. Kollman, David A. Case, U. Chandra Singh, Caterina Ghio, Giuliano Alagona, Salvatore Profeta Jr. and Paul Weiner. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society. 1984, 106, 765-784.
[43] Li-Hsiang Perng. Comparison of thermal degradation characteristics of poly(arylene sulfone)s using thermogravimetric Analysis/Mass Spectrometry. Journal of Applied Polymer Science. 2001, 81, 2387-2398.
[44] Joey W. Storer, David J. Giesen, Christopher J. Cramer and Donald G. Truhlar. Class IV charge models: A new semiempirical approach in quantum chemistry. Journal of Computer-Aided Molecular Design. 1995, 9, 87–110.
[45] V. Lachet, J.-M. Teuler and B. Rousseau. Classical force field for hydrofluorocarbon molecular simulations. Application to the study of gas solubility in poly(vinylidene fluoride). The journal of physical chemistry. 2015, 119, 140-151.
[46] Brian Doherty, Xiang Zhong, Symon Gathiaka, Bin Li and Orlando Acevedo. Revisiting OPLS force field parameters for ionic liquid simulations. Journal of chemical theory and computation. 2017, 13, 6131-6145.
校內:2028-08-23公開