| 研究生: |
施文玫 Shih, Wen-Mei |
|---|---|
| 論文名稱: |
台灣辦公建築外殼耗能指標之簡化及調整 Simplification and adjustment of the envelope thermal performance index for office buildings in Taiwan |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 不確定性分析 、建築能耗模擬 、外殼能耗 、OTTV 、ENVLOAD |
| 外文關鍵詞: | Uncertainty analysis, Building energy simulation, Envelope energy, OTTV, ENVLOAD |
| 相關次數: | 點閱:82 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變化及其相關環境問題引起大眾對社會可持續發展的關注。近幾十年來,全球一致大力減少溫室氣體排放,在建築方面,能夠經由訂定法規來控制建築外殼的設節能設計,為節約能源和減少溫室氣體排放作出重大貢獻。建築能源標准或規範在能源效率政策中變得越來越重要,這些標準有助於提高建築節能的關注和意識,促進建築節能設計。世界上許多國家也都有制定相關的規範及限制,期望透過建築能源標準,以實現節能減碳的目標。台灣的ENVLOAD和東南亞國家的OTTV都是性能式建築外殼指標。從公式轉換或者物理意義的推導,本研究證明了ENVLOAD和OTTV兩者之間是可以互相轉換。本研究以台灣的辦公建築為例,以台北、台中、高雄及花蓮作為研究對象,通過不確定性分析結合建築能源模擬技術,成功的建立台北、台中、高雄及花蓮地區辦公廳類建築的OTTV公式,以及找出對應現行ENVLOAD基準值的OTTV基準值。同時,也完成了綠建築外殼節能得分從以ENVLOAD改成以OTTV計分的轉換。
本文的重點除了建立台灣各地區 OTTV 公式和其對應的基準值以外,並非嘗試以 OTTV 來取代在台灣已應用多年且成效良好的 ENVLOAD,而是在提出發展適合。台灣 OTTV 公式的方法與流程。目前正值台灣綠建築標章走向國際化,特別是朝南鄰的東南國家推廣的時候,本研究提出的方法適合用來發展出其他國家或城市的一致性公式,相信對台灣綠建築標章認證體系的國際化將會有所幫助。
Global climate change and its related environmental issues have aroused public concern about the sustainable development of society. In recent decades, concerted efforts have been made to reduce globally greenhouse gas emissions. In construction, it has been able to make significant contributions to energy conservation and greenhouse gas emissions by setting regulations to control the design of energy-saving designs for building enclosures. The ENVLOAD of Taiwan and OTTV of Southeast Asian countries are both performance-based envelope building indices. According to the deductions of formula transformation and physical significance, this paper proved that interconversion can be achieved between ENVLOAD and OTTV. Taking office buildings in in Kaohsiung, Taipei, Taichung and Hualien for example, this paper applied uncertainty analysis and building energy simulation techniques to successfully establish an OTTV formula for office buildings in Taiwan and determined the OTTV reference value of the corresponding and current ENVLOAD reference values. Meanwhile, the scoring of green building envelope energy saving has been transformed from ENVLOAD to OTTV. Taiwan Green Building label is currently going internationalization. In particular, regarding the promotion of Southeast Asian countries facing south; the method proposed by this paper is suitable to develop a consistent formula for other countries or cities. It is believed that this formula will be helpful for the internationalization of Taiwan Green Building label certification system.
英文文獻:
1. Anna Maria Atzeri, Francesca Cappelletti, Athanasios Tzempelikos, Andrea Gasparella, Comfort metrics for an integrated evaluation of buildings performance, Energy and Buildings 127 (2016) 411–424
2. ANSI/ASHRAE/IESNA Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings.
3. Authority, B. (1995). Code of Practice for Overall Thermal Transfer Value in Buildings 1995. Building Authority, Hong Kong.
4. Belcher, S. E., et al. (2005). "Constructing design weather data for future climates." Building Services Engineering Research and Technology 26(1): 49-61.
5. Breesch, H. and A. Janssens (2010). "Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis." Solar energy 84(8): 1453-1467.
6. Chan, A. (2011). "Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong." Energy and Buildings 43(10): 2860-2868.
7. Chen, X., et al. (2017). "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings." Applied energy 194: 422-439.
8. ChinaJinghua Yu, Liwei Tian, Xinhua Xu, Jinbo Wang (2015), Evaluation on energy and thermal performance for office building envelope in different climate zones of China, Energy and Buildings 86 :626–639
9. Chirarattananon, S. (1992, November). Building energy efficiency in Thailand, In Proc. of the Symposium on Energy Efficient Buildings, Hong Kong, 2.1–2.12.
10. Chou, S. and Y. Lee (1988). "A simplified overall thermal transfer value equation for building envelopes." Energy 13(8): 657-670.
11. Chou, S. K. and Chang, W. L., 1997. A generalized methodology for determining the total heat gain through building envelopes, International Journal of Energy Research, 20 (1996): 887-901.
12. Chow, W. K. and Chan, K. T., 1995. Parameterization study of the overall thermal transfer value equation for buildings, Applied Energy, 50 (1995): 247-268.
13. Chow, W. K. and Chan, K. T., 1992. Overall thermal transfer values for building envelopes in Hong Kong, Applied Energy, 42 (1992): 289-312
14. de Wilde, P. and W. Tian (2009). Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. Building Simulation, Springer.
15. De Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 34(9), 951-958.
16. Development, S. P. W. D. and B. C. Division (1980). Handbook on Energy Conservation in Buildings and Building Services, Development & Building Control Division, Public Works Department.
17. Encinas, F., & De Herde, A. (2013). Sensitivity analysis in building performance simulation for summer comfort assessment of apartments from the real estate market. Energy and Buildings, 65, 55-65.
18. Energy, P. D. o. (1993). Guidelines for Energy Conserving Design of Buildings and Utility Systems, Department of Energy, Republic of the Philippines.
19. EnergyPlus Version 8.1 Documentation. the US Department of Energy. (2013).
20. Guidelines for Energy Conserving Design of Buildings and Utility Systems. (1993). Department of Energy, Republic of Philippines.
21. Guidelines for Energy Efficiency in Buildings. (1989, December). Ministry of Energy, Telecommunications and Posts, Malaysia.
22. Handbook on Energy Conservation in Buildings and Building Services. (1979). Building and Construction Authority, Public Works Department, Singapore.
23. Handbook, A. F. (2009). American society of heating, refrigerating and air-conditioning engineers. Inc.: Atlanta, GA, USA.
24. Hopfe, C. J., & Hensen, J. L. (2011). Uncertainty analysis in building performance simulation for design support. Energy and Buildings, 43(10), 2798-2805.
25. Huang, K. T., & Hwang, R. L. (2016). Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. Applied Energy, 184, 1230-1240.
26. Hui, S. C. (1997). Overall thermal transfer value (OTTV): how to improve its control in Hong Kong. In Proc. of the One-day Symposium on Building, Energy and Environment, 16, 12-1).
27. J.W. Lee, H.J. Jung , J.Y. Park , J.B. Lee, Y. Yoon, Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements, Renewable Energy 50 (2013) 522-531
28. Janda, K. B. and J. F. Busch (1994). "Worldwide status of energy standards for buildings." Energy 19(1): 27-44.
29. Jentsch, M. F., et al. (2008). "Climate change future proofing of buildings—Generation and assessment of building simulation weather files." Energy and Buildings 40(12): 2148-2168.
30. Junghun Lee, et al., Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons, Renewable and Sustainable Energy Reviews 75 (2017) 1081–1088
31. Lai, I.T., Huang, K.T., Hwang, R.L., (2017, July). Uncertainty and sensitivity analysis of residential cooling energy against future climate in hot-humid Taiwan, PLEA 2017 Conference, London, UK.
32. LBNL(Lawrence Berkeley National Laboratory). EnergyPlus manual V 8.6; November 2008. Berkeley.
33. Macdonald, I. A. (2009). Comparison of sampling techniques on the performance of Monte-Carlo based sensitivity analysis. In Eleventh International IBPSA Conference (992-999).
34. Macdonald, I., & Strachan, P. (2001). Practical application of uncertainty analysis. Energy and Buildings, 33(3), 219-227.
35. Malaysia. Kementerian Tenaga, T. and Pos (1989). Guidelines for Energy Efficiency in Buildings, Ministry of Energy, Telecommunications and Posts.
36. Nguyen, A.-T., et al. (2014). "A review on simulation-based optimization methods applied to building performance analysis." Applied energy 113: 1043-1058.
37. Rodríguez, G. C., Andrés, A. C., Muñoz, F. D., López, J. M. C., & Zhang, Y. (2013). Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy and Buildings, 67, 79-87.
38. Rodríguez, G. C., et al. (2013). "Uncertainties and sensitivity analysis in building energy simulation using macroparameters." Energy and Buildings 67: 79-87.
39. S, C. (1992). Building energy efficiency in Thailand. Proceedings of the Symposium Energy Efficient Building. Hong Kong: 2-1 to 2-12.
40. Shih, W.M., Hwang, R.L., Lin, T.P. (2018), The feasibility of integration of Envelope conservation index between Taiwan and ASEAN, Proceedings of the 9th Asian Conference on Refrigeration and Air Conditioning,June 11-13, 2018, Sapporo, JAPAN
41. Standard 62-1989, Ventilation for acceptable indoor air quality. Atlanta.
42. Standard, A. S. H. R. A. E. 90-75 (1975). Energy Conservation in New Building Design. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA
43. Standard, A. S. H. R. A. E. Standard 90.1-2007. Atlanta: ASHRAE
44. Takeshi Ihara, Arild Gustavsen, Bjørn Petter Jelle, Effect of facade components on energy efficiency in office buildings, Applied Energy 158 (2015) 422–432
45. What is the UNFCCC & the COP. Climate Leaders. Lead India. 2009
46. Wilhelm A. Friess. Kambiz Rakhshan. Michael P. Davis, A global survey of adverse energetic effects of increased wall insulation in office buildings: degree day and climate zone indicators, Energy Efficiency (2017) 10:97–116
47. Yıldız, Y. and Z. D. Arsan (2011). "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates." Energy 36(7): 4287-4296.
中文文獻:
1. 內政部建築研究所智慧綠建築資訊網. (2013). 建築能源模擬解析用TMY3標準氣象年資料
2. 內政部營建署(2011)。辦公廳類建築物節約能源設計技術規範
3. 內政部營建署(2012)。建築物強化外殼部位熱性能節約能源設計技術規範
4. 巴黎氣候峰會歷史性協議:全球升溫限2℃以內 - The News Lens 關鍵評論網
5. 王仁俊& 林憲德. (2005). 辦公類建築ENVLOAD簡算法之研究. 建築學報, (53), 141-154.
6. 吳柏駿. (2013). 建築外殼節能規範國際比較之研究-以中國, 美國, 台灣為例. 成功大學建築學系學位論文, 1-81.
7. 林憲德 (1997). 建築物節約能源設計技術規範與實例, 內政部營建署.
8. 林憲德, 林子平, & 蔡耀賢. (2015). 綠建築評估手冊-基本型, 台北: 內政部建築研究所.
9. 建築能耗評估計算機技術的發展, 2003,天津大學環境科學與工程學院
10. 施文玫,黃瑞隆,林子平.(2018). 以不確定性分析法探討台灣與東南亞國協關於辦公建築外殼能耗指標整合的可行性,(103期) , 35-49
11. 党奇, 譚蓉, & 徐新華. (2010). 建築圍護結構熱性能指標 OTTV 的研究與應用. 製冷與空調 (北京), 10(4), 10-14.
12. 陳錦賜,張世典.(1999). 建築節約能約指標之研究,內政部建築研究所
13. 黃國倉,林憲德(2006)。辦公建築全年空調耗能量簡易預測法之研究。建築學報,(58),131-147。
14. 簡林頡. (2009). 辦公廳類建築外殼節能之成本效益分析. 臺北科技大學土木與防災研究所學位論文, 1-115.