簡易檢索 / 詳目顯示

研究生: 楊子毅
Yang, Tzu-Yi
論文名稱: 超導體NbSn2之單晶成長與物理性質研究
Crystal growth and physical properties of Superconductor NbSn2
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 115
中文關鍵詞: 單晶成長超導體傳輸性質核磁共振
外文關鍵詞: Single crystal growth, superconductor, transport properties, nuclear magnetic resonance
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬錫化物由於 s-d軌域的交互作用產生許多值得研究的物理現象。在Nb-Sn這個系統中,最具代表性的超導體Nb3Sn因其A15結構而產生特別的物理性質,在基礎研究與應用領域都展現極大的潛力。相較而言,NbSn2由於具備特別的熱力學性質,導致很難生長出大尺寸的單晶樣品,使其物理性質研究相當匱乏。目前文獻僅報導出其多晶樣品在溫度2.6 K展現了超導相變,以及少數的理論計算結果。
    為了深入研究NbSn2的物理性質,我們使用新的方法-液相傳輸法,並成功獲得大尺寸的單晶樣品。由此方法生長的單晶樣品在X-ray繞射實驗中,展現非常高的結晶性。在物理性質的實驗中,磁化率與電阻率的量測結果皆在2.6K展現超導相變。進一步透過比熱與磁滯曲線分析其超導特性,確定NbSn2是第二型BCS超導體。在傳輸性質方面,我們量測其一般態的電阻率、磁阻、熱導率與熱電勢。從熱電勢的實驗結果中,觀察到電子主導的單能帶傳輸行為。結合其磁阻行為的分析,發現 NbSn2有溫度造成的載子變化。此外,我們還透過核磁共振研究⁹³Nb和¹¹⁹Sn周圍的電子結構,進行微觀尺度下的的分析。

    The transition-metal stannides have attracted research interest due to their intriguing physical phenomena arising from the s–d orbital interactions. In the Nb–Sn system, the well-known superconductor Nb3Sn has shown great potential in both fundamental studies and practical applications due to its A15-type structure. In contrast, NbSn2 remains less explored because of its unique thermodynamic properties, which make it extremely difficult to grow large single crystals. To date, only a few theoretical calculations and a report on a polycrystalline sample showing a superconducting transition at 2.6 K have been published.
    To enable further investigations into its physical properties, we successfully synthesized large single crystals of NbSn2 using a liquid transport method. X-ray diffraction measurements confirmed the high crystallinity of the crystals, further demonstrating the reliability of this method for single-crystal growth. Both magnetization and resistivity measurements consistently reveal a superconducting transition at 2.6 K. The analysis of the specific heat and magnetization hysteresis data confirms that NbSn2 is a conventional type-II BCS superconductor. To explore its normal-state transport properties, we carried out electrical resistivity, magnetoresistance, thermal conductivity, and Seebeck coefficient. A single-band transport dominated by electrons is observed by the Seebeck coefficient measurements. Combined with the analysis of magnetoresistance behavior, these results suggest a temperature-induced carrier variation in NbSn2. Moreover, ⁹³Nb and ¹¹⁹Sn nuclear magnetic resonance (NMR) measurements will be carried out to probe the electronic environment of each atoms.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENT IV LIST OF TABLES VII LIST OF FIGURES VIII 1. INTRODUCTION 1 1-1. History of superconductor 1 1-2. Motivation 5 2. THEORY 7 2-1. Superconductivity 7 2-1-1. Ginzburg-Landau theory 7 2-1-2. BCS theory 13 2-2. Specific heat 18 2-2-1. Electrical specific heat 18 2-2-2. Lattice specific heat 20 2-2-3. Specific heat in superconducting state 23 2-3. Electrical resistance 25 2-3-1. Parallel resistor model 27 2-4. Thermal conductivity 30 2-4-1. Lattice thermal conductivity 30 2-4-2. Electrical thermal conductivity 33 2-5. Seebeck coefficient 35 2-6. Nuclear magnetic resonance (NMR) 38 2-6-1. Hyperfine interaction 39 2-6-2. Quadrupole effect 40 2-6-3. Spin-lattice relaxation rate 41 3. CRYSTAL GROWTH 43 3-1. Introduction 43 3-2. Phase diagram 44 3-3. Flux method 45 3-4. Liquid transport 46 4. EXPERIMENTAL METHODS 49 4-1. Sample characteristic 49 4-1-1. Powder x-ray diffraction 49 4-1-2. Single crystal x-ray diffraction 51 4-1-3. Laue x-ray diffraction 53 4-2. Physical property measurement system (PPMS) 54 4-2-1. Electrical resistivity measurement 54 4-2-2. Specific heat measurement 55 4-3. Magnetism measurement 57 4-4. Thermoelectric measurement 58 4-4-1. Thermal conductivity 59 4-4-2. Seebeck coefficient 60 4-5. Nuclear magnetism resonance 62 4-5-1. Spin-echo technique 63 4-5-2. Spin relaxation time measurement 64 5. RESULTS AND DISCUSSION 66 5-1. Sample characteristic 66 5-2. Superconducting properties 68 5-2-1. Magnetic hysteresis loop 69 5-2-2. Specific heat 73 5-3. Transport properties 76 5-3-1. Electrical resistivity 76 5-3-2. Magnetoresistance 79 5-3-3. Thermal conductivity 81 5-3-4. Seebeck coefficient 82 5-4. Electrical structure 84 5-4-1. 93Nb NMR study 84 5-4-2. 119Sn NMR study 89 6. CONCLUSION 92 Appendix A: SCXRD results and IUCR report 93 Appendix B: Band structure and DOS 96 Appendix C: Lists of γ and A value for different materials 97 References 98

    [1] K. Onnes, Commun. Phys. Lab. Univ. Leiden, b 120 (1911).
    [2] P. Mangin and R. Kahn, Superconductivity: an introduction. Springer, 2016.
    [3] Meissner, Walther, and R. Ochsenfeld, Naturwissenschaften 21(44):787–788 (1933).
    [4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical review 108, 1175 (1957).
    [5] L. N. Cooper, Physical Review 104, 1189 (1956).
    [6] B. Sales, W. Meier, A. May, J. Xing, J.-Q. Yan, S. Gao, Y. Liu, M. Stone, A. Christianson, and Q. Zhang, Physical Review Materials 5, 044202 (2021).
    [7] M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, and J. G. Checkelsky, Nature communications 11, 4004 (2020).
    [8] M. Kakihana, K. Nishimura, D. Aoki, A. Nakamura, M. Nakashima, Y. Amako, T. Takeuchi, T. Kida, T. Tahara, and M. Hagiwara, Journal of the Physical Society of Japan 88, 014705 (2019).
    [9] W. R. Meier, M.-H. Du, S. Okamoto, N. Mohanta, A. F. May, M. A. McGuire, C. A. Bridges, G. D. Samolyuk, and B. C. Sales, Physical Review B 102, 075148 (2020).
    [10] Y. Wu, L.-L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Nature Physics 12, 667 (2016).
    [11] E. Mun, H. Ko, G. J. Miller, G. D. Samolyuk, S. L. Bud'Ko, and P. C. Canfield, Physical Review B 85, 035135 (2012).
    [12] X. Luo, R. Xiao, F. Chen, J. Yan, Q. Pei, Y. Sun, W. Lu, P. Tong, Z. Sheng, and X. Zhu, Physical Review B 97, 205132 (2018).
    [13] C. Xu, W. Zhou, R. Sankar, X. Xing, Z. Shi, Z. Han, B. Qian, J. Wang, Z. Zhu, and J. Zhang, Physical Review Materials 1, 064201 (2017).
    [14] N. H. Jo, Y. Wu, L.-L. Wang, P. P. Orth, S. S. Downing, S. Manni, D. Mou, D. D. Johnson, A. Kaminski, and S. L. Bud'ko, Physical Review B 96, 165145 (2017).
    [15] D. Shen, C. N. Kuo, T. W. Yang, I. N. Chen, C. S. Lue, and L. M. Wang, Communications Materials 1, 56 (2020).
    [16] E. Herrera, B. Wu, E. O'Leary, A. M. Ruiz, M. Águeda, P. G. Talavera, V. Barrena, J. Azpeitia, C. Munuera, and M. García-Hernández, Physical Review Materials 7, 024804 (2023).
    [17] W. Zhu, R. Song, J. Huang, Q.-W. Wang, Y. Cao, R. Zhai, Q. Bian, Z. Shao, H. Jing, and L. Zhu, Nature Communications 14, 7012 (2023).
    [18] C.-C. Chang, C.-E. Hsu, J.-Y. Haung, T.-C. Liu, C.-M. Cheng, W.-T. Chen, P.-Y. Cheng, C.-N. Kuo, C.-S. Lue, and C.-C. Lee, Physical Review B 108, 205133 (2023).
    [19] A. Godeke, Superconductor Science and Technology 19, R68 (2006).
    [20] S. Posen, J. Lee, D. N. Seidman, A. Romanenko, B. Tennis, O. Melnychuk, and D. Sergatskov, Superconductor Science and Technology 34, 025007 (2021).
    [21] J. Ogren, T. Ellis, and J. Smith, Acta Crystallographica 18, 968 (1965).
    [22] J. Charlesworth, Physics Letters 21, 501 (1966).
    [23] R. E. Enstrom, Journal of Applied Physics 37, 4880 (1966).
    [24] D. Van Ooijen, J. Van Vucht, and W. Druyvesteyn, Physics Letters 3, 128 (1962).
    [25] T. Wölpl and W. Jeitschko, J Alloy Compd 210, 185 (1994).
    [26] M. Tinkham, Introduction to superconductivity. Courier Corporation, 2004.
    [27] M. Xu, doctor of philosophy, Iowa State University (2023).
    [28] A. Abrikosov, Soviet Physics JETP 19, 988 (1964).
    [29] P. Müller, A.V. Ustinov, and V. V. Schmidt., The physics of superconductors: Introduction to fundamentals and applications (Springer Science & Business Media, 1997).
    [30] N. Werthamer, E. Helfand, and P. Hohenberg, Physical Review 147, 295 (1966).
    [31] N. W. Ashcroft and N. Mermin, Physics (New York: Holt, Rinehart and Winston) Appendix C 1 (1976).
    [32] A. H. Wilson, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 167, 580 (1938).
    [33] J. Mooij, physica status solidi (a) 17, 521 (1973).
    [34] Z. Fisk and G. Webb, Physical Review Letters 36, 1084 (1976).
    [35] A. Ioffe and A. Regel, in Progress in semiconductors1960), pp. 237.
    [36] O. Gunnarsson, M. Calandra, and J. Han, Reviews of Modern Physics 75, 1085 (2003).
    [37] H. Wiesmann, M. Gurvitch, H. Lutz, A. Ghosh, B. Schwarz, M. Strongin, P. Allen, and J. Halley, Physical Review Letters 38, 782 (1977).
    [38] M. Gurvitch and A. Fiory, Physical review letters 59, 1337 (1987).
    [39] A. Hebard, T. Palstra, R. Haddon, and R. Fleming, Physical Review B 48, 9945 (1993).
    [40] P. Khalifah, K. Nelson, R. Jin, Z. Mao, Y. Liu, Q. Huang, X. Gao, A. Ramirez, and R. Cava, Nature 411, 669 (2001).
    [41] D. K. C. MacDonald, Thermoelectricity: an introduction to the principles (Courier Corporation, 2006).
    [42] J. Charlesworth, I. Macphail, and P. Madsen, Journal of Materials Science 5, 580 (1970).
    [43] P. C. Canfield and Z. Fisk, Philosophical magazine B 65, 1117 (1992).
    [44] J. Lachmann, N. Huber, and A. Leineweber, Materials Characterization 168, 110563 (2020).
    [45] Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S., J. Appl. Cryst. 52, 918-925 (2019).
    [46] Bruker technology. D2 phaser (Bruker, 2024).
    [47] A. A. Bunaciu, E. G. UdriŞTioiu, and H. Y. Aboul-Enein, Critical reviews in analytical chemistry 45, 289 (2015).
    [48] 劉信寬 (2022)。成大核心設施儀器設備技術手冊與訓練教材-單晶X光繞射儀。台灣:成大核心設施。
    [49] Quantum Design, Physical Property Measurement System (PPMS®) DynaCool, available at: https://qdusa.com/products/dynacool.html.
    [50] R. Bachmann, F. DiSalvo Jr, T. Geballe, R. Greene, R. Howard, C. King, H. Kirsch, K. Lee, R. Schwall, and H.-U. Thomas, Review of Scientific Instruments 43, 205 (1972).
    [51] 大沼薰、陳亮瑜、黃沛盈、鄭又嘉與李民楷 (2022)。成大核心設施儀器設備技術手冊與訓練教材-物理性質量測系統儀。台灣:成大核心設施。
    [52] 楊章君 (2022)。成大核心設施儀器設備技術手冊與訓練教材-超導量子干涉儀。台灣:成大核心設施。
    [53] American Radio Relay League, The ARRL Handbook for Radio Amateurs, (1994).
    [54] J. Reitz and F. Milford, Foundations of Electromagnetic Theory, (Addison-Wesley Publishing Co.,1967).
    [55] R. R. Ernst and W. A. Anderson, Review of Scientific Instruments 37, 93 (1966).
    [56] E. Altshuler and T. Johansen, Reviews of Modern Physics 76, 471 (2004).
    [57] J. Carbotte, Reviews of Modern Physics 62, 1027 (1990).
    [58] C. K. Poole, H. A. Farach, and R. J. Creswick, Handbook of superconductivity (Elsevier, 1999).
    [59] C. Kittel and P. McEuen, Introduction to solid state physics (John Wiley & Sons, 2018).
    [60] W. McMillan, Physical Review 167, 331 (1968).
    [61] K. Kadowaki and S. Woods, Solid state communications 58, 507 (1986).
    [62] K. Miyake, T. Matsuura, and C. Varma, Solid state communications 71, 1149 (1989).
    [63] C. Y. Clare and P. Anderson, Physical Review B 29, 6165 (1984).
    [64] S. Li, L. Taillefer, D. Hawthorn, M. Tanatar, J. Paglione, M. Sutherland, R. Hill, C. Wang, and X. Chen, Physical review letters 93, 056401 (2004).
    [65] B. Lv, M. Li, J. Chen, Y. Yang, S. Wu, L. Qiao, F. Guan, H. Xing, Q. Tao, and G.-H. Cao, Physical Review B 102, 064507 (2020).
    [66] G. K. White and S. Woods, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 251, 273 (1959).
    [67] M. Zhou, Y. Gu, S. Ni, B. Ruan, Q. Liu, Q. Yang, L. Chen, J. Yi, Y. Shi, and G. Chen, Physical Review B 108, 224518 (2023).
    [68] D. Mayoh, J. Barker, R. Singh, G. Balakrishnan, D. M. Paul, and M. R. Lees, Physical Review B 96, 064521 (2017).
    [69] D. Yan, D. Geng, Q. Gao, Z. Cui, C. Yi, Y. Feng, C. Song, H. Luo, M. Yang, and M. Arita, Physical Review B 102, 205117 (2020).
    [70] L. Toth, M. Ishikawa, and Y. Chang, Acta Metallurgica 16, 1183 (1968).
    [71] M. Parish and P. Littlewood, Nature 426, 162 (2003).
    [72] P. Cheng, H. Yang, Y. Jia, L. Fang, X. Zhu, G. Mu, and H.-H. Wen, Physical Review B 78, 134508 (2008).
    [73] J. Xu, F. Han, T.-T. Wang, L. R. Thoutam, S. E. Pate, M. Li, X. Zhang, Y.-L. Wang, R. Fotovat, and U. Welp, Physical Review X 11, 041029 (2021).
    [74] C. S. Lue, C. Chen, J. Lin, Y. Yu, and Y. Kuo, Physical Review B 75, 064204 (2007).
    [75] C.-S. Lue and Y.-K. Kuo, Physical Review B 66, 085121 (2002).
    [76] Y. Kuo, K. Sivakumar, S. Huang, and C.-S. Lue, Journal of applied physics 98 (2005).
    [77] R. D. Barnard and V. Cannella, Physics Today 27, 52 (1974).
    [78] M. Cohen and F. Reif, in Solid state physics (Elsevier, 1957), pp. 321.
    [79] W. D. Knight, Physical Review 76, 1259 (1949).
    [80] S. Wada, R. Aoki, and O. Fujita, Journal of Physics F: Metal Physics 14, 1515 (1984).
    [81] B. Nowak and O. Żogał, Solid State Nuclear Magnetic Resonance 1, 251 (1992).
    [82] Y. Yafet and V. Jaccarino, Physical Review 133, A1630 (1964).
    [83] C. Tseng, C. Kuo, B. Li, L. Wang, A. Gippius, Y. Kuo, and C. Lue, Solid State Communications 270, 26 (2018).
    [84] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, APL APL Materials 2013,1(1): P. 011002.
    [85] A. Jacko, J. Fjærestad, and B. Powell, Nature Physics 5, 422 (2009).
    [86] C. Lue, H. Liu, C. Kuo, P. Shih, J.-Y. Lin, Y. Kuo, M. Chu, T. Hung, and Y. Chen, Superconductor Science and Technology 26, 055011 (2013).
    [87] A. B. Karki, Y. M. Xiong, N. Haldolaarachchige, S. Stadler, I. Vekhter, P. W. Adams, D. Young, W. Phelan, and J. Y. Chan, Physical Review B 83, 144525 (2011).
    [88] Z. Yang, Z. Yang, Q. Su, E. Fang, J. Yang, B. Chen, H. Wang, J. Du, C. Wu, and M. Fang, Physical Review B 106, 224501 (2022)

    無法下載圖示 校內:2027-08-20公開
    校外:2027-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE