簡易檢索 / 詳目顯示

研究生: 葉博文
Yeh, Bo-Wen
論文名稱: 以紫外光照射改良氮摻雜碳化矽薄膜介電阻障層性質之研究
Study on the Improvement of the Properties of Nitrogen-doped SiC Dielectric Barrier Layer by Ultraviolet- exposed
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 阻障層氮摻雜碳化矽碳化矽介電阻障層低介電
外文關鍵詞: Nitrogen-doped silicon carbide, Silicon carbide, dielectric barrier, Barrier, Low-k
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論氮摻雜碳化矽(nitrogen-doped silicon carbide, SiCN)薄膜的材料基本特性以及紫外光後處理對其性質改良之研究。目前在新研發材料中,氮摻雜碳化矽薄膜因具有低的介電常數(k= ~4.9)及較低的漏電流密度,用來取代傳統具高介電常數的氮化矽 (silicon nitride) (k= ~8),作為新一代的介電阻障層材料。紫外光照射處理為目前受矚目的薄膜改質後處理,在超低介電(ultra low-k)薄膜製程中,應用紫外光後處理使薄膜結構改變,並使介電常數下降。
    本研究動機起因於若可應用紫外光改善介電阻障層性質,則可與超低介電薄膜做製程整合,以減少後段製程的步驟。此實驗利用電漿輔助化學氣相沈積法(PECVD)沈積氮摻雜碳化矽薄膜,並利用紫外光照射系統對薄膜做後處理,另外利用MIS(metal-insulator-semiconductor)結構,量測薄膜之電性質的部分。紫外光後處理實驗分為兩個部分,包括照射時基板溫度及照射時間,分別探討對薄膜物理性質與電性質的影響。
    研究結果顯示,紫外光與薄膜內部鍵結產生光化學反應,打斷Si-H鍵結,使得Si*自由基增多,並與薄膜內未鍵結C形成Si-C以及Si-(CHn)-Si鍵結,而此鍵結變化造成薄膜性質的改變。紫外光照射時其基板溫350℃,時間三分鐘,可使介電常數下降至4.63,並使其殘留應力減少至-25.69MP,薄膜厚度沒有明顯變化,漏電流密度在電場1MV/cm並沒有明顯上升,故可得知紫外光後處理能有效改良SiCN薄膜介電阻障層性質,有利於半導體後段製程應用。

    In this thesis, the basic material properties of nitrogen-doped silicon carbide and the improvement of the dielectric barrier properties by ultraviolet (UV) treatment will be investigated. Nitrogen-doped silicon carbide (SiCN) with lower dielectric constant (k~4.9) and lower leakage current is a promising dielectric barrier material to replace the typical use of silicon nitride (SixNy) (k~8). Recently, a newly-developed post treatment (UV treatment) has attained much attention and was used to change the structure of ultra low-k films in order to decrease the dielectric constant.

    In this study, the UV treatment will be used to improve the property of SiCN films for the combination of the back-end-of-line process with ultra low-k films and dielectric barrier. The SiCN film was deposited by plasma-enhanced chemical vapor deposition (PECVD), and the post treatment was used by UV system. The metal-insulator-semiconductor (MIS) structure was used to measure the electrical property of the film. The experiment’ parameters of UV treatment have included the substrate temperature and the curing time during UV treatment. And the effects of the parameters on the physical properties and electrical properties will be investigated.

    After UV curing, it could be observed that the Si-H bonds was broken and the Si* free radical increased. The recombination of unsatisfied bonds on silicon and carbon atoms was promoted, enhancing the Si-C and Si-(CHn)-Si bonds. The dielectric constant decreased to 4.63 after UV curing at 350℃ for three minutes. And the residual stress decreased to -25.69MPa. The leakage current did not change obviously at the electrical field of 1 MV/cm. In consequently, UV treatment is effective to improve the SiCN films property and has extremely potential to the back-end-of-line application.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 8 第二章 理論基礎 10 2-1 化學氣相沈積法 10 2-2 介電材料 13 2-2-1 材料的極性與極化 13 2-2-2 材料的介電行為 18 2-3 電阻電容時間延遲 20 2-4 銅之後段金屬連線製程發展 22 2-5 斷鍵機制 23 2-6 擴散阻障層的定義 23 2-7 降低介電常數的方法 25 2-8 漏電流傳導機制 2-8-1 蕭基發射(Schottky-Richardson emission)效應 26 2-8-2 普爾-夫倫克爾(Poole-Frenkel mechanism)效應 29 第三章 實驗方法與步驟 32 3-1 實驗流程圖 32 3-2 實驗材料 33 3-3 基材前處理 33 3-4 薄膜沈積設備 37 3-5紫外光照射系統 37 3-6薄膜沈積步驟與實驗條件 37 3-7 電性分析試片製程 40 3-8真空退火實驗 40 3-9 鍍層的分析與測試 44 3-9-1 折射率與厚度 44 3-9-2 傅利葉轉換紅外線光譜儀 44 3-9-3 成份和化學鍵結分析 44 3-9-4 縱深元素分析 45 3-9-5 穿透式電子顯微鏡 45 3-9-6 殘留應力量測 46 3-7-6 電容電壓量測 48 第四章 結果與討論 50 4-1 SiCN 介電阻障層初鍍薄膜之特性 50 4-1-1 化學成分與鍵結型態分析 50 4-1-2 SiCN 薄膜電性分析 60 4-1-3 SiCN 的熱穩定性分析 67 4-2 紫外光照射對 SiCN 薄膜物理性質之影響 69 4-2-1 介電常數與折射率之探討 69 4-2-1-1 基板溫度對介電常數與折射率之影響 69 4-2-1-2 照射時間對介電常數與折射率之影響 75 4-2-2 鍵結型態分析 79 4-2-2-1 照射溫度對鍵結型態影響 79 4-2-2-2 照射時間對鍵結型態的影響 82 4-2-3 收縮率分析 84 4-2-3-1 照射溫度對於收縮率影響 84 4-2-3-2 照射時間對於收縮率影響 84 4-2-4 殘留應力分析 87 4-2-4-1 照射溫度對於殘留應力的影響 87 4-2-4-2 照射時間對於殘留應力的影響 89 4-3 紫外光照射對 SiCN薄膜電性之影響 90 4-3-1 照射溫度對 SiCN 薄膜漏電流之影響 90 4-3-2 照射時間對 SiCN 薄膜漏電流之影響 93 第五章 結論 101 參考文獻 103 自述 111

    [1] R. Liu, in ULSI Technology, edited by C.Y. Chang and S.M. Sze, Chap.9 (McGraw-Hill, Singapore,1996).
    [2]曾偉志, 矽半導體元件中之金屬導線製程簡介, 金屬工業, Vol. 33, No. 3, 96 (1999).
    [3] S.P. Murarka, “Low Dielectric Constant Materials for Interlayer Dielectric Applications”, Solid State Technology, 39 (3), p.83 (1996).
    [4] 吳文發, 秦玉龍, 電遷移效應對銅導線可靠度之影響, 毫微米通訊, Vol. 6, No. 1, p.17 (1999).
    [5] X.W. Lin, Dipu Pramanik, “Future Interconnect Technologies and Copper Metallization”, Solid State Technology, 10, p.63 (1998).
    [6] R.J. Gutmann, T. P. Chow, A. E. Kaloyeros, W. A. Lanford ,and S. P. Murarka, “Thermal Stability of On-chip Copper Interconnect Structures”, Thin Solid Films, 262, p.177 (1995).
    [7] N. Awaya., H. Inokawa, E. Yamamoto, Y. Okazaki, M. Miyake, Y. Arita ,and T. Kobayashi, “Evaluation of a Copper Metallization Process and the Electric characteristics of Copper-interconnected Quarter-micron CMOS”, IEEE Trans. Electron Devices, 43, p.1206 (1996).
    [8] J. Tao, N. W. Cheung, and C. Hu, “Electromigration Characteristics of Copper Interconnects”, IEEE Electron Device Letters., 14, p.249 (1994).
    [9] C. S. Liu, L. J. Chen, ”Room-Temperature oxidation of Silicon in the Presence of Cu3Si”, Thin Solid Films, 262, p.187 (1995).
    [10] C. S. Liu, L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Cu Thin Films on Atomically Cleaned (111)Si. I. Phase Formation and Interface Structure”, J. Appl. Phys , 74, p.5001 (1993).
    [11] 吳文發, 黃麒峰, 銅製程之擴散阻障層, 毫微米通訊, Vol. 6, No. 4, p.30 (1999).
    [12] Jung-Chao Chiou, Hong-I Wang, and Mao-Chieh Chen, “Dielectric Degradation of Cu/SiO2/Si Structure During Thermal Annealing”, J. Electrochem. Soc., 143, p.990 (1996).
    [13] I.Sun, Maenpa M-A, Nicolet & M. Lumoajarvi, “Thermal Stability of Hafnium and Titanium Nitraide Diffusion Barrier in Multilayer Contacts to Silicon”, J, Electrochem. Soc., 103, p.1215 (1983).
    [14] Hoa T. M. Pham, Charles R. de Boer, Cassan C. C. G. Visser, and Pasqualina M. Sarro, “Evaluation of an Empirical Model to Estimate and Optimize Mechanical Properties of PECVD SiC Films”, Journal of The Electrochemical Society, 152 (11), G889-G893 (2005).
    [15] 蔡國強、謝嘉民、戴寶通、歐耿良”以高密度電漿化學氣相沈積系統製程非晶相氫化碳化矽膜之研究” 毫微米通訊, Vol. 9, No. 1, p.6
    [16] A.L. Baia Neto , S.S. Camargo Jr. , R. Carius , F. Finger , W. Beyer, ” Annealing effects on near stoichiometric a-SiC:H films” Surface and Coatings Technology 120–121, p.395–400(1999).
    [17] F. Lanckmans , W.D. Gray, B. Brijs, K. Maex, ” A comparative study of copper drift diffusion in plasma deposited a-SiC:H and silicon nitride” Microelectronic Engineering 55, p 329-335 (2001).
    [18] M. Vogt, M. Kachel, K. Drescher, ”Dielectric barrie r for Cu metallizationsystems”, Material for Avanced Metallization, pp.51-52, (1997).
    [19] Masayuki Tanaka, Shigehiku Saida, Tadashi Lijima and Yoshitaka Tsunashima, “Low-k SiN films for Cu interconnects integration fabricated by ultra low temperature thermal CVD”, Symposium on VLSI Technology Digest of Technical Papers, pp.47-48, (1999).
    [20] J.Yota, M.Janani, L.E. Camilletti, A.Kar-Roy, Q.Z.Liu, C.Nguyen, M.D.Woo, “Comparison between HDP CVD and PECVD silicon nitride for advanced interconnect applications”, Interconnect Technology Conference, Proceedings of the IEEE 2000 International , p.76-78(2000).
    [21] Kinya Goto, Hiroshi Yuasa, Akira Andatsu, Masazumi Matsuura, ” Film Characterization of Cu Diffusion Barrier Dielectrics for 90nm and 65nm Technology Node Cu Interconnects”, Interconnect Technology Conference, Proceedings of the IEEE 2003 International ,p.6-8(2003).
    [22] Jeremy Martin, Stan Filipiak, Tab Stephens, Fred Huang, Massud Aminpur, and Judith Mueller, ”Integration of SiCN as a low k etch stop and Cu passivation in a high performance Cu/low k interconnect” Interconnect Technology Conference, Proceedings of the IEEE 2002 International ,p.42-44 (2002).
    [23] H. Aoki, K.Torii, T.Oshima, J.Noguchi, U.Tanaka, ”Robust 130nm-node Cu dual damascene technology with low-k barrier SiCN”, Electron Devices Meeting, 2001. IEDM Technical Digest. International, p4.2.1-p4.2.4 (2001).
    [24] Bing-Yue Tsui, Kuo-Lung Fang and Shyh-Dar Lee, ” Electrical Instability of Low-Dielectric Constant Diffusion Barrier Film (a-SiC :H) for Copper Interconnect” IEEE Transactions on electoron devies, Vol. 48, No. 10, October (2001).
    [25] C. W. Chen, T. C. Chang,, P. T. Liu, T. M. Tsai, and T. Y. Tseng, ” Effects of Oxygen Plasma Ashing on Barrier Dielectric SiCN Film” Electrochemical and Solid-State Letters, 8 (1)G11-G13 (2005).
    [26] J. Iacoponi, “Status and Future prospects for low k interconnect metrology”, International Sematech., March (2003).
    [27] Alexander E. Braun, “Low-k Integration Advances With Hesitation”, Semiconductor International, May (2003).
    [28] A. S. Grove, “Mass transfer in semiconductor technology,” Ind. and Eng. Chem., 58, 48 (1966).
    [29] B. Chapman, Glow Discharge Process, (John Wiley and Sons, New York, 1980).
    [30] S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998).
    [31] S. R. Willson, C. J. Tracy, “Handbook of Multilevel Metallization for Integrated Circuits”, Noyes Publications, Park Ridge, New Jersey, U.S.A, (1993).
    [32] D.Menzel, ”Recent developments in electron and photon stimulated desorption”J.Vac. Sci. Technol,20(3), p.538(1982).
    [33] M. L. Knotek, ” Stimulated desorption from surfaces” Phys. Today 37,p.24(September 1984)
    [34] P. A. Redhead, Can. J. Phys. 42,886(1964)
    [35] James W. Mayer and S. S. Lau, “Electronic Materials Science: For Integrated Circuits in Si and GaAs”, Macmillan, U.S.A., chap.11, p.306-337.
    [36 P. Hesto, in: G. Barvotlin, A. Vapaille (Eds.), Instabilities in Silicon Devices, Ch. 5, vol. 1, pp.263, North-Holland, Amsterdam (1986).
    [37] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, Chap. 14, pp. 25, McGraw-Hill, New York, (1970).
    [38] D.A. Neamen, “Semiconductor physics and devices”, p.383, McGraw-Hill, New York, (1997).
    [39] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, Ch. 14, pp. 28, McGraw-Hill, New York (1970).
    [40] S. M. Sze, Physics of Semiconductor Devices, Ch. 7, pp. 402, Wiley, New York (1981).
    [41] P. T. Liu, T. C. Chang, M. C. Huang, Y. L. Yang, Y. S. Mor, M. S. Tsai, H. Chung, J. Hou and S. M. Sze, Journal of The Electrochemical Society, 147 (11) 4313-4317, (2000).
    [42] Stefan Hufner, "Photoelectron Spectroscopy", (Springer-Verlag) p. 242. [43] G. G. Stoney, Proc. Roy. Soc. London A82, 172 (1909).
    [44]F. Demichelis, C.F. Pirri, E. Tresso, T. Stapinski,” Differences in physical properties of hydrogenated and fluorinated amorphous silicon carbide prepared by reactive sputtering” J. Appl. Phys. 71,p5641 (1992).
    [45] E. Gat, M.A. Elkhakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J.C. Kieffer, J. Durand, B. Cros, F. Rousseaux, S. Gujrathi, “A study of the effect of composition on the microstructural evolution of a–SixC1-x:H PECVD films: IR absorption and XPS characterizations” , J. Mater. Res. 7 (1992) 2478.
    [46] X.C. Xiao, Y.W. Li, L.X. Song, X.F. Peng, X.F. Hu, Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar ” , Appl. Surf. Sci. 156, p.155 (2000).
    [47] S. Sitbon, M.C. Hugon, B. Agius, F. Abel, J.L. Courant, M. Puech, ” Low temperature deposition of silicon nitride films by distributed electron cyclotron resonance plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. 13 (1995) 2900.
    [48] V.S. Nguyen, S. Burton, P. Pan, “The Variation of Physical Properties of Plasma-Deposited Silicon Nitride and Oxynitride with Their Compositions”J. Electrochem. Soc. 131, p.2348(1984).
    [49] G. Lucovsky, D.V. Tsu, “Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation”J. Vac. Sci. Technol. A5, p.2231 (1987).
    [50] M. T. Kim and J. Lee, “Characterization of amorphous SiC:H filmsdeposited from hexamethyldisilazane” Thin Solid Films, 303, p.173 (1997).
    [51] Dong S. Kim, Young H. Lee, “Annealing effects on a-SiC:H and a-SiC:H(F) thin films deposited by PECVD at room temperature”, Thin Solid Films, 261, pp. 192-201 (1995).
    [52] N. Mutsukura, K.I. Akita, “Infrared absorption spectroscopy measurements of amorphous CNx films prepared in CH4/N2 r.f. discharge”, Thin Solid Films 349,p.115 (1999).
    [53] Y. Tawada, K. Kondo, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 53 p.5273. (1982).
    [54] Y.H. Wang , M.R. Moitreyee , R. Kumar , L. Shen , K.Y. Zeng , J.W. Chai , J.S. Pan” Acomparative study of low dielectric constant barrier layer, etch stop and hardmask films of hydrogenated amorphous Si-(C, O, N)” Thin Solid Films 460 (2004) 211–216.
    [55]Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, “Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films”, Appl. Surf. Sci., 184, p.161 (2001).
    [56] T. P. Smirnova, A. M. Badalian, L. V. Yakovkina, V. V. Kaichev, V. I. Bukhtiyarov, A. N. Shmakov, I. P. Asanov, V. I. Rachlin, and A. N. Fomina, “SiCN alloys obtained by remote plasma chemical vapour deposition from novel precursors”, Thin Solid Films, 429, 144 (2003).
    [57] W.K. Choi, T.Y. Ong, L.S. Tan, F.C. Loh, K.L. Tan,” Infrared and x-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films”, J. Appl. Phys. 83,p.4968 (1998).
    [58] Y.H. Wang, J. Lin, C.H.A. Chua, “Multiphase structure of hydrogenated amorphous silicon carbide thin films “ , Mater. Sci. Eng. B 95,p.43 (2002).
    [59] W.F.A. Besling, A. Goossens, B. Meester, J. Schoonman, “Particle f ormation in SiOx film deposition by low frequency plasma enhanced chemical vapor deposition” J. Appl. Phys. 83 (1998) 544.
    [60] M. Tabbal, P. Merel, S. Moisa, M. Chaker, A. Ricard, M.
    Moisan, “X-ray photoelectron spectroscopy of carbon nitride films deposited by graphite laser ablation in a nitrogen postdischarge”, Appl. Phys. Lett. 69, p.1698 (1996).
    [61] C.W. Chen , T.C. Chang , P.T. Liu , T.M. Tsai , H.C. Huang , J.M. Chen , C.H. Tseng , C.C. Liue, T.Y. Tseng”Investigation of the electrical properties and reliability of amorphous SiCN” Thin Solid Films 447 –448, p632–637 (2004).
    [62] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. 148, F148 (2001).
    [63] S. Mikoshiba and S. Hayase, “Preparation of low density poly(methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of Ångstrom size pores prepared by baking trifluoropropylsilyl copolymers”, J. Mater. Chem., 9, 591 (1999).
    [64] C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. W. Rhee, P. M. Rice, M. F. Toney, M. Trollsas, and D. Y. Yoon, “Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates”, Chem. Mater., 11, 3080 (1999).
    [65] Q. Wu and K. K. Gleason, “Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, J. Vac. Sci. Technol. A 21, 388 (2003).
    [66] Y. W. Koh and K. P. Loh,” Low dielectric constant a-SiOC:H films as copper diffusion barrier” J. Appl. Phys., 93, 1241 (2003).
    [67]Chang Sil Yang, Chi Kyu Choi, ” The characteristics of carbon-doped silicon oxide films with nano-pore structure deposited using UV-assisted PECVD” Thin Solid Films 506– 507,p.8-12 (2006).
    [68] Chang Sil Yang, Meera Kannan, Chi Kyu Choi “Studies on the low dielectric SiOC(–H) thin films deposited using MTMS and oxygen as precursors by UV source assisted PECVD” Surface & Coatings Technology 200 ,1624 – 1628p. (2005).
    [69] Jun-Ying Zhang , Ian W. Boyd ,” UV light-induced deposition of low dielectric constant organic polymer for interlayer dielectrics” Optical Materials 9 , p.251-254 (1998).
    [70] C. C. Chiang and M. C. Chen , ” TDDB Reliability Improvement in Cu Damascene by using a Bilayer-Structured PECVD Sic Dielectric Barrier” nterconnect Technology Conference, Proceedings of the IEEE 2002 International ,p.200-202(2002).
    [71] V. Dharmadhikari, J.S. Sims, B. Varadarajan, S. Chang, D. Niu, K. Shrinivasan, “UV-assisted processing for advanced dielectric films” SOLID STATE TECHNOLOGY, (March 2005).
    [72] 柯依秀, 低介電常數碳氧化矽阻障層與銅金屬整合之電性可靠度研究, 國立交通大學電子工程學系電子研究所,碩士論文,中華民國九十三年六月
    [73] M.A.Eikhakani, M.Chaker, A.Jean, S.Boily, H.Pepin, and J.C.Kieffer, ”Effect of rapid thermal annealing on both the stress and the bonding states of a-SiC:H films” J.Appl.Phys.74, p.2834 (1993).

    下載圖示 校內:2016-07-24公開
    校外:2016-07-24公開
    QR CODE