| 研究生: |
顏慧慈 Yan, Hui-Ci |
|---|---|
| 論文名稱: |
無機量子點色彩轉換微腔結構有機發光二極體之研究 Investigation of Color Conversion microcavity Organic Light-Emitting Diodes with Inorganic Quantum Dots |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 莊文魁 Ricky W. Chuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 有機發光二極體 、微腔 、量子點 、白光發光二極體 |
| 外文關鍵詞: | organic light-emitting diodes, microcavity, quantum dots, white light-emitting diodes |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中主要使用藍綠光有機發光二極體與無機硒化鎘/硫化硒-核/殼量子點-聚甲基丙烯酸甲酯混合薄膜製作出色彩轉換有機發光二極體。有機發光二極體的基本結構為氧化銦錫 / NPB/ MADN:DSA-Ph/ Alq3/ 氟化鋰/ 鋁。本實驗中所有元件都成長於玻璃基板上, NPB為電洞傳輸層,MADN:DSA-Ph為藍光發光層 (MADN為主發光體、DSA-Ph為客發光體),Alq3為電子傳輸層,氟化鋰為電子注入以及緩衝層、鋁為陰極。
由於傳統以氧化銦錫作為陽極的發光元件展現出來的效能不夠好,因此在這裡我們也製作出以微共振腔結構為主的藍綠光有機發光二極體,其中元件的陽極是銀薄膜。銀薄膜與元件的上電極會形成微共振腔效應,進而提升元件的亮度與效率。另外我們發現蒸鍍氧化鉬薄膜可以修飾銀薄膜表面,並且可提升元件的發光強度以及減少元件的起始電壓。最後我們在元件的基板背後塗抹一層量子點-聚甲基丙烯酸甲酯混合薄膜,可作為調整發光顏色的材料。
最後我們成功利用藍綠光有機發光二極體激發紅光無機量子點,進而實現具高色彩純度的白光。這兩種新穎結構的白光發光元件都有良好的電流穩定度,其中具有微共振腔結構的白光元件展現較高的發光效率,但它的色彩飽和度較不理想。相較於基本結構的白光元件,其效率由每毫安培1.35燭光量提升了42.9%至1.93燭光量;在操作電流為6毫安培之下,亮度由每平方公尺6047燭光量提升了64 %至9904燭光量,色度座標為(0.306, 0.323),色溫為6910。
In this study, the color conversion organic light-emitting diodes (OLEDs) were fabricated by using the blue-green OLEDs and red emitting CdSe/ZnS core/shell quantum dots (QDs). The basic structure of the OLEDs was composed by indium tin oxide (ITO)/ N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′ biphenyl)-4,4′-diamine (NPB)/ 2-methyl-9,10- di(2-napthyl)anthracene:p-bis(p-N,N-diphenyl-aminostyryl)benzene (MADN:DSA-Ph)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/ lithium fluoride (LiF)/ aluminum (Al). All of the devices were deposited on glass substrates. NPB, MADN:DSA-Ph, Alq3, LiF, and Al were used as the hole transporting layer, emitting layer, electron transporting layer, electron injection layer and cathode, respectively.
To improve the light emitting efficiency of our blue-green emitting devices, the microcavity OLEDs consist of the semi-transparent silver (Ag) thin film as the bottom mirror and Al film as the top mirror was fabricated. Besides, the molybdenum trioxide (MoO3) thin film could be well-deposited on the Ag film by thermal evaporation, result in the enhancement of light emitting efficiency and decreaseing the turn on voltage for microcavity OLEDs. Finally, the QD-PMMA composite film was wiped on the backside of the glass substrates to be used as the color conversion layer.
The red emitting QDs were successfully excited by blue-green light emitting devices and the pure white organic light-emitting diodes (WOLEDs) were achieved by introducing the intensity adjustment of the three-band spectra. Both WOLEDs showed high color stability, despite the increase of the operation current. WOLEDs with microcavity structures also exhibited higher light efficiency. Nevertheless, the pure white light wasn’t easily obtained. The luminous efficiency and luminance was 1.93 cd/A and 9904 cd/m2 at 6 mA, respectively, which was enhanced by 42.9 % and 64 % in comparison with that of 1.35 cd/A and 6047cd/m2 for WOLEDs based on basic structures, respectively. The CIE coordinates were (0.306, 0.323), and the correlated color temperature (CCT) was 6910.
[1]M. C. A. Bernanose, and P. Vouaux, Journal of Chemical Physics, vol. 50, pp. 64, 1953.
[2]P. V. A. Bernanose, Journal of Chemical Physics, vol. 50, pp. 261, 1953.
[3]A. Bernanose, Journal of Chemical Physics, vol. 52, pp. 396, 1955.
[4]P. V. A. Bernanose, Journal of Chemical Physics, vol. 52, pp. 509, 1955.
[5]P. Mark, Helfrich and Wolfgang, "Space-Charge-Limited Currents in Organic Crystals," Journal of Applied Physics, vol. 33, pp. 205, 1962.
[6]H. Kallmann and M. Pope, "Positive Hole Injection into Organic Crystals," The Journal of Chemical Physics, vol. 32, pp. 300, 1960.
[7]M. Pope, H. P. Kallmann, and P. Magnante, "Electroluminescence in Organic Crystals," The Journal of Chemical Physics, vol. 38, pp. 2042, 1963.
[8]W. Helfrich and Schneide.Wg, "Recombination Radiation in Anthracene Crystals," Physical Review Letters, vol. 14, pp. 229-&, 1965.
[9]C. W. Tang and S. A. Vanslyke, "Organic Electroluminescent Diodes," Applied Physics Letters, vol. 51, pp. 913-915, 1987.
[10]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, "Light-Emitting-Diodes Based on Conjugated Polymers," Nature, vol. 347, pp. 539-541, 1990.
[11]H. Yokoyama, "Physics and Device Applications of Optical Microcavities," Science, vol. 256, pp. 66-70, 1992.
[12]E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, "Highly Efficient Light-Emitting-Diodes with Microcavities," Science, vol. 265, pp. 943-945, 1994.
[13]A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, "Microcavity Effects in Organic Semiconductors," Applied Physics Letters, vol. 64, pp. 2486-2488, 1994.
[14]A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," Journal of Applied Physics, vol. 80, pp. 6954-6964, 1996.
[15]J. H. Yoon, H. S. Jeong, and I. S. Park, "Investigation of emission location in top-emitting green organic light-emitting devices by optical analysis," Thin Solid Films, vol. 518, pp. 5588-5592, 2010.
[16]C. L. Lin, H. C. Chang, K. C. Tien, and C. C. Wu, "Influences of resonant wavelengths on performances of microcavity organic light-emitting devices," Applied Physics Letters, vol. 90, 2007.
[17]S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, "White organic light-emitting diodes using a quantum dot as a color changing material," Journal of Industrial and Engineering Chemistry, vol. 15, pp. 602-604, 2009.
[18]S. H. Cho, J. R. Oh, H. K. Park, H. K. Kim, Y. H. Lee, J. G. Lee, and Y. R. Do, "Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters," Optics Express, vol. 18, pp. 1099-1104, 2010.
[19]J. Lee, N. Chopra, D. Bera, S. Maslov, S. H. Eom, Y. Zheng, P. Holloway, J. G. Xue, and F. So, "Down-Conversion White Organic Light-Emitting Diodes Using Microcavity Structure," Advanced Energy Materials, vol. 1, pp. 174-178, 2011.
[20]J. Gao and J. Dane, "Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing," Applied Physics Letters, vol. 83, pp. 3027-3029, 2003.
[21]H. J. Yu, K. Park, W. Chung, J. Kim, and S. H. Kim, "White light emission from blue InGaN LED precoated with conjugated copolymer/quantum dots as hybrid phosphor," Synthetic Metals, vol. 159, pp. 2474-2477, 2009.
[22]O. V. Vassiltsova, Z. Y. Zhao, M. A. Petrukhina, and M. A. Carpenter, "Surface-functionalized CdSe quantum dots for the detection of hydrocarbons," Sensors and Actuators B-Chemical, vol. 123, pp. 522-529, 2007.
[23]B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, "Highly efficient white organic light-emitting diode," Applied Physics Letters, vol. 88, 2006.
[24]M. Bender, J. Trube, and J. Stollenwerk, "Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films," Applied Physics a-Materials Science & Processing, vol. 69, pp. 397-401, 1999.
[25]T. Futagami, Y. Shigesato, and A. Yasui, "Characterization of RF-enhanced DC sputtering to deposit tin-doped indium oxide thin films," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, pp. 6210-6214, 1998.
[26]T. Maruyama and K. Fukui, "Indium Tin Oxide Thin-Films Prepared by Chemical Vapor-Deposition," Thin Solid Films, vol. 203, pp. 297-302, 1991.
[27]V. Vasu and A. Subrahmanyam, "Reaction-Kinetics of the Formation of Indium Tin Oxide-Films Grown by Spray Pyrolysis," Thin Solid Films, vol. 193, pp. 696-703, 1990.
[28]T. Ishida, H. Kobayashi, and Y. Nakato, "Structures and Properties of Electron-Beam-Evaporated Indium Tin Oxide-Films as Studied by X-Ray Photoelectron-Spectroscopy and Work-Function Measurements," Journal of Applied Physics, vol. 73, pp. 4344-4350, 1993.
[29]S. A. VanSlyke, C. H. Chen, and C. W. Tang, "Organic electroluminescent devices with improved stability," Applied Physics Letters, vol. 69, pp. 2160-2162, 1996.
[30]Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, "Multilayered Organic Electroluminescent Device Using a Novel Starburst Molecule, 4,4',4'-Tris(3-Methylphenylphenylamino)Triphenylamine, as a Hole Transport Material," Applied Physics Letters, vol. 65, pp. 807-809, 1994.
[31]D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker, D. Metzdorf, D. Schneider, H. H. Johannes, and W. Kowalsky, "Low-voltage organic electroluminescence device with an ultrathin, hybrid structure," Applied Physics Letters, vol. 82, pp. 4178-4180, 2003.
[32]Y. Hamada, N. Matsusue, H. Kanno, H. Fujii, T. Tsujioka, and H. Takahashi, "Improved luminous efficiency of organic light-emitting diodes by carrier trapping dopants," Japanese Journal of Applied Physics Part 2-Letters, vol. 40, pp. L753-L755, 2001.
[33]Y. Yang and A. J. Heeger, "Polyaniline as a Transparent Electrode for Polymer Light-Emitting-Diodes - Lower Operating Voltage and Higher Efficiency," Applied Physics Letters, vol. 64, pp. 1245-1247, 1994.
[34]Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, "Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode," Synthetic Metals, vol. 87, pp. 171-174, 1997.
[35]Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, "Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers," Applied Physics Letters, vol. 74, pp. 2227-2229, 1999.
[36]L. S. Hung, L. R. Zheng, and M. G. Mason, "Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3," Applied Physics Letters, vol. 78, pp. 673-675, 2001.
[37]J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, "Dual role of LiF as a hole-injection buffer in organic light-emitting diodes," Applied Physics Letters, vol. 84, pp. 2913-2915, 2004.
[38]F. X. Wang, X. F. Qiao, T. Xiong, and D. G. Ma, "The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes," Organic Electronics, vol. 9, pp. 985-993, 2008.
[39]C. W. T. S. A. VanSlyke, US 5,061,569, 1991.
[40]E. H. Martin and J. Hirsch, "Determination of Carrier Mobility in Plastics by a Time-of-Flight Method," Solid State Communications, vol. 7, pp. 783-&, 1969.
[41]G. Horowitz, "Organic field-effect transistors," Advanced Materials, vol. 10, pp. 365-377, 1998.
[42]黃孝文,陳金鑫, OLED:Materials and Devices of Dream Displays, 2009.
[43]M. A. Lampert, Current Injection in Solids. New York: Academic, 1970.
[44]U. Wolf, V. I. Arkhipov, and H. Bassler, "Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation," Physical Review B, vol. 59, pp. 7507-7513, 1999.
[45]S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. F. Seidler, and W. Riess, "Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation," Physical Review B, vol. 60, pp. 8791-8797, 1999.
[46]M. Kiy, I. Biaggio, M. Koehler, and P. Gunter, "Conditions for ohmic electron injection at the Mg/Alq(3) interface," Applied Physics Letters, vol. 80, pp. 4366-4368, 2002.
[47]C. W. Tang, S. A. Vanslyke, and C. H. Chen, "Electroluminescence of Doped Organic Thin-Films," Journal of Applied Physics, vol. 65, pp. 3610-3616, 1989.
[48]M. Klessinger, Excited States and Photo-Chemistry of Organic Molecules. New York: VCH, 1995.
[49]T. Tsutsui, N. Takada, S. Saito, and E. Ogino, "Sharply Directed Emission in Organic Electroluminescent Diodes with an Optical-Microcavity Structure," Applied Physics Letters, vol. 65, pp. 1868-1870, 1994.
[50]S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," Journal of Applied Physics, vol. 86, pp. 2407-2411, 1999.
[51]C. T. Lee, L. Z. Yu, and H. Y. Liu, "Optical Performance Improvement Mechanism of Multimode-Emitted White Resonant Cavity Organic Light-Emitting Diodes," Ieee Photonics Technology Letters, vol. 22, pp. 272-274, 2010.
[52]R. Zhu, M. C. Hargis, J. M. Woodall, and M. R. Melloch, "Metal-mirror-based resonant-cavity enhanced light-emitting diodes by the use of a tunnel diode contact," Ieee Photonics Technology Letters, vol. 13, pp. 103-105, 2001.
[53]K. A. Neyts, "Simulation of light emission from thin-film microcavities," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 15, pp. 962-971, 1998.
[54]H. Riel, S. Karg, T. Beierlein, W. Riess, and K. Neyts, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," Journal of Applied Physics, vol. 94, pp. 5290-5296, 2003.
[55]C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, "Advanced Organic Light-Emitting Devices for Enhancing Display Performances," Journal of Display Technology, vol. 1, pp. 248-266, 2005.
[56]J. Cao, X. Liu, M. A. Khan, W. Q. Zhu, X. Y. Jiang, Z. L. Zhang, and S. H. Xu, "RGB tricolor produced by white-based top-emitting organic light-emitting diodes with microcavity structure," Current Applied Physics, vol. 7, pp. 300-304, 2007.
[57]N. Takada, T. Tsutsui, and S. Saito, "Control of Emission Characteristics in Organic Thin-Film Electroluminescent Diodes Using an Optical-Microcavity Structure," Applied Physics Letters, vol. 63, pp. 2032-2034, 1993.
[58]J. H. Lee, K. Y. Chen, C. C. Hsiao, H. C. Chen, C. H. Chang, Y. W. Kiang, and C. C. Yang, "Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures," Journal of Display Technology, vol. 2, pp. 130-137, 2006.
[59]S. K. H. Riel, T. Beierlein, and W. Rieß, "Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study," Journal of Applied Physics, vol. 94, pp. 5290-5296, 2003.
[60]S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, "Interference effects in bilayer organic light-emitting diodes," Applied Physics Letters, vol. 74, pp. 1939-1941, 1999.
[61]S. Hofmann, M. Thomschke, B. Lussem, and K. Leo, "Top-emitting organic light-emitting diodes," Optics Express, vol. 19, pp. A1250-A1264, Nov 7 2011.
[62]W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, "White emission using mixtures of CdSe quantum dots and PMMA as a phosphor," Optical Materials, vol. 32, pp. 515-521, 2010.
[63]J. W. Ma, Z. Liang, C. Jin, X. Y. Jiang, and Z. L. Zhang, "Enhanced power efficiency for white OLED with MoO3 as hole injection layer and optimized charge balance," Solid State Communications, vol. 149, pp. 214-217, 2009.
[64]J. Cao, X. Y. Jiang, and Z. L. Zhang, "MoOx modified Ag anode for top-emitting organic light-emitting devices," Applied Physics Letters, vol. 89, 2006.
[65]X. W. Zhang, H. P. Lin, J. Li, L. Zhang, B. Wei, X. Y. Jiang, and Z. L. Zhang, "A very simple method of constructing efficient inverted top-emitting organic light-emitting diode based on Ag/Al bilayer reflective cathode," Journal of Luminescence, vol. 132, pp. 1-5, 2012.
[66]X. L. Zhu, J. X. Sun, X. M. Yu, M. Wong, and H. S. Kwok, "Investigation of Al- and Ag-based top-emitting organic light-emitting diodes with metal oxides as hole-injection layer," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 1033-1036, 2007.
[67]C. F. Qiu, H. Y. Chen, M. Wong, and H. S. Kwok, "Dependence of the current and power efficiencies of organic light-emitting diode on the thickness of the constituent organic layers," Ieee Transactions on Electron Devices, vol. 48, pp. 2131-2137, 2001.
[68]X. Y. Sun, W. L. Li, Z. R. Hong, H. Z. Wei, F. X. Zang, L. L. Chen, Z. Shi, D. F. Bi, B. Li, Z. Q. Zhang, and Z. Z. Hu, "Investigation of dye-doped red emitting organic electroluminescent devices with metal-mirror microcavity structure," Journal of Applied Physics, vol. 97, 2005.
[69]M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, and C. H. Chen, "Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene," Applied Physics Letters, vol. 85, pp. 3301-3303, 2004.
[70]C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, "Transient Electroluminescence from Hole Transporting Emitting Layer in Nanosecond Region," Applied Physics Letters, vol. 63, pp. 1322-1324, 1993.
[71]Q. Wang, Z. Q. Deng, J. S. Chen, and D. G. Ma, "Realization of blue, green, and white inverted microcavity top-emitting organic light-emitting devices based on the same emitting layer," Optics Letters, vol. 35, pp. 462-464, 2010.
[72]Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, "An efficient organic light-emitting diode with silver electrodes," Chemical Physics Letters, vol. 386, pp. 128-131, 2004.
[73]M. T. Lee and M. R. Tseng, "Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping technology," Current Applied Physics, vol. 8, pp. 616-619, 2008.