| 研究生: |
孫明郎 sun, mang-lang |
|---|---|
| 論文名稱: |
以天然鍵結軌域研究M(CO)6錯合物內
之鍵結及H2、SiO與CN¯的配位基本質 Studies of Bonding in M(CO)6 and ligand nature of H2、SiO and CN¯by the Natural Bond Orbital Method |
| 指導教授: |
王小萍
wan, sho-pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 回饋鍵結 、配位基本質 |
| 外文關鍵詞: | backbonding, ligand natural |
| 相關次數: | 點閱:51 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首度以NBO(Natural Bond Orbital)方法對一氧化碳金屬錯合物進行Pi鍵結電子的理論研究。結果顯示,在同一族間呈現兩種不一樣的回饋鍵結電子密度傾向: (1)6B、7B族錯合物:5d>3d>4d,此結果符合多數近期的研究,(2)4B、5B、8B族錯合物: 5d>4d>3d,其中4B、5B族則與文獻上IR研究結果一致。由E(2)值分析發現,回饋電子來源可以歸納為兩大類:第一類來自於中心金屬原子dπ→ 2π(CO),其軌域間的穩定能量E(2)值呈現: 5d>4d>3d,分析其原因是來自作用軌域間的能量差(Ej-Ei)值: 5d<4d<3d,以及軌域間的作用能量(Fij)呈現: 5d>4d>3d,此結果如一般所預期的傾向。第二類是來自於錯合物順式位置上的碳原子pπ→ 2π(CO),其E(2)值傾向則與第一類不同,而呈現: 3d>5d>4d,其原因是由於作用軌域間的能量差呈現: 3d<4d<5d,而軌域間的作用能量則呈現: 3d>5d>4d。這個結果與dπ→ 2π(CO)的傾向有所衝突,因而造成大多數6B、7B族金屬六羰基錯合物2π(CO)軌域回饋鍵結電子密度呈現: 3d≈5d>4d傾向。
本研究也對於一些6B族M(CO)5L配位基的本質作比較,結果可以歸納出這些配位基πeffect強度依序為: CO >SiO≈ H2>CN¯。尤其本研究發現CN¯是一強σdonor,幾乎近於π中性,此點與文獻Mossbauer光譜的結果非常接近。但對H2配位基而言,他們的實驗方法似乎高估了H2的πacceptor性質。至於SiO配位基,我們發現應是一個可以穩定錯合物的配位基,因其π效應僅略小於CO。這些配位基的[2π]值,也符合本研究對於6B及7B族呈不規律之傾向結果。
The natural populations in the carbonyls’ antibonding pi (2p) orbitals have been calculated by Natural Bond Orbital (NBO) method. There are two types of tendency found for a given family. For groups 6B and 7B, the order of backbonding extend acquired is 5d > 3d > 4d ( Class A). For the rest series, 4B, 5B and 8B, however, the tendency of backbonding obtained is as expected 5d > 4d > 3d (class B). The 2p population arising from two orbital interactions: dπ(M)→ 2p and pπ(C)→ 2p according to the NBO method. The dp(M)à2p reveals the 5d>4d>3d order whereas the pπ(C)→ 2p indicates a 3d>5d>4d order for class A M(CO)6. The overall results found in groups 6B and 7B, therefore, can be accounted by the net effects of the above-mentioned mechanisms. In class B, on the other hand, the dπ(M)→ 2p dominates and one finds the expected order based purely on characteristics of nd-orbitals.
The same studies have been extended on group 6B M(CO)5L in order to examine the nature of substitute L, where L= CN¯, SiO and H2 in the current study. Through natural population analysis on either the remained carbonyl’s 2p or the ligand’s Rydberg orbitals, we have found the strengths for p-accepting capability are in the order CO > SiO≈ H2 > CN¯. It is noteworthy that our results reveal that the cyano ligand is nearly p-neutral or is better treated as a s-donor ligand. This conclusion provides support in support of one current report regarding to cyano from Mossbauer spectroscopy. Whereas the H2 ligand is a rather weak p-acceptor. Moreover, NPA performed on this series also indicates the specific order for group 6B transition metals,5d > 3d > 4d.
1.(a)S. P. Wang, M. G. Richmond, M. Schwartz; J. Am. Chem. Soc.,
114, 7595,1992.
(b)K. S. Wang, D. Wang, K. Yang, M. G. Richmond, M. Schwartz;
Inorg. Chem. , 34, 3241,1995.
2. B. E. Douglas,D. H. McDaniel,J. J. Alexander; Inorganic Chemistry,
3th Ed ;Wiley press,USA,1994.
3. S. P. Wang, P. Yuan, M. Schwartz; Inorg. Chem. , 29, 484,1990.
4. A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 88, 899,1988.
5. A. E. Reed, R. B. Weinstock and F. Weinhold; J. Chem. Phys., 83,
1736,1985.
6. A. E. Reed and F. Weinhold; J. Chem. Phys., 78, 4066,1983.
7. (a) A. E. Reed and F. Weinhold; J. Chem. Phys., 84, 5687,1986.
(b) F. Weinhold; j. Mol. Struct., Theochem;181, 398,1997.
(c) N. W. Mitzel and U. Losehand; J. Am. Chem. Soc., 120, 7320,
1998.
(d) L. Goodman, V. Pophristic and F. Weinhold; Acc. Chem. Res.,
32, 983, 1999.
(e) P. Hobza, J. Sponer, E. Cubero, M. Orozco and F. J. Luque; J. Phys.
Chem. B, 104, 6286,2000.
(f) B.Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V.
Spirko and P. Hobza; J. Phys. Chem. A, 105, 5560,2001.
(g) S. P. Ananthavel and M. Manoharan; Chem. Phys., 49, 269,2001.
(h) S. J. Wilkens, W. M. Weatler, F. Weinhold and J. L. Markley;
J.Am. Chem. Soc., 124, 1190,2002.
8. (a)Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951. 18, C79.
(b)Chatt, J; Duncanson, L. A. J. Chem. Soc.. 2929,1953.
9. P. Hohenberg , W. Kohn, “Inhomogeneous Electron Gas”,
Physical Review, 136, B864,1964.
10. P. Hohenberg , W. Kohn, “Inhomogeneous Electron Gas”,
Physical Review, 136, B864,1964.
11. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4:
The Self- Consistent Field for Molecular and Solids;McGraw-Hill, New York,
1974.
12. R. S. Mulliken; J. Chem. Phys., 23, 1833, 1841, 2338, 2343,1955.
13. R. McWeeney; “Coulson’s Valence,” 3rd Ed., Oxford University
Press:New York, 1979.
14. R. S. Mulliken; J. Phys. Chem., 1, 492(1933); 3, 520(1935); 7, 339, 1937.
15. W. J. Hehre, L. Radom and P. v. R. Schleyer; “ Ab Initio Molecular Orbital
Theory,” Canada ,1986.
16. P. A. Cassabella and P. J. Bray; J. Chem. Phys., 28, 1182,1958.
17. R. Verma and K. S. Buckton; J. Chem. Phys., 46, 1565,1967.
18. R. G. Barnes and W. V. Smith; Phys. Rev., 93,1954.
19. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,”
Elsevier, New York, 1984.
20. J. P. Foster and F. Weinhold; J. Am. Chem. Soc., 102, 7211,1980.
21.Gaussian 98 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S.
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G.
Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and
J. A. Pople, Gaussian. Inc., Pittsburgh PA, 1998.
22. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Cerpenter and F.
Weinhold. Cited in reference 54.
23.廖奇泊; 國立成功大學碩士論文,1995.
24.黃敏英; 國立成功大學碩士論文,1998.
25. B. K. King and F. Weinhold; J. Chem. Phys., 103, 333,1995.
26. Aeleen Frisch,Michael J. Frisch, Gaussian 98 User’s Reference,
Pittsburgh,U.S.A.,Gaussian,Inc,1998.
27.Aeleen Frisch,James B.Foresman, Exploring Chemistry with Electronic Structure
Methods,Second Edition, Pittsburgh,
U.S.A.,Gaussian,Inc., 1993.
28.Andreas W. Ehlers, Stefan Dapprich, Sergei F. Vyboishchikov,and
Gernot Frenking.;Organometallics ;15,105-117.1996.
29.Alan E. Reed, Robert B. Weinstock, and Frank Weinhold; J.
Chem. Phys., 83(2), 15 July, 1985.
30.Kathryn L. Kunze and Ernest R. Davidson; J. Chem. Phys., , 96,
2129 -2141,1992.
31.Jamal Uddin, Christian Boehme, and Gernot Frenking;
Organometallics19,571-582, 2000.
32.吳宗昆; 國立中興大學碩士論文,2003.
33.D.F. Shriver,P.W.Atkins,C.H.Langford;,Inorganic Chemistry,2rd Ed., Oxford
University Press,New York, 1994.
34.Gary L. Miessler,Donald A. Tarr;, Inorganic Chemistry.,Prentice-Hall
Press,USA,1991.
35.Martin S. Silberberg;,Chemistry,3rd Ed;McGraw –Hillpress,2003.
36.Chang Raymond;Chemistry,7th Ed;Mc Graw -Hill press, Singapore ,2002.
37.D.D.Ebbing,S.D. Gammon,R.O. Ragsdale;Essentials of General
Chemistry;Houghton Mifflin Company,USA,2003.
38.James E. Huheey,Ellen A. keiter,Richard L. Keiter;Inorganic
Chemistry ,4th Ed ;Pearson Education,Taiwan Ltd,Taiwan,2003.
39.Robert H. Morris and Marcel Schlaf; Inorganic Chem; 1994, 33, 1725-1726.