簡易檢索 / 詳目顯示

研究生: 田俊宏
Tien, Chun-Hung
論文名稱: 混合燃料燃燒特性之研究
A STUDY OF COMBUSTION CHARACTERISTICS FOR BLENDED FUELS
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 混合燃料燃燒特性數值模擬對衝流燃燒
外文關鍵詞: blended fuels, combublended fuels, combustion characteristics, simulation, counterflow combustion
相關次數: 點閱:133下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    題目:混合燃料燃燒特性之研究
    研究生:田俊宏
    指導教授:趙怡欽
    多重成份燃料在未來當成能量的來源是一種相當有潛力的方式,直到現在,多重成份燃料之燃燒特性包括燃燒速度、以及成份間之互相影響機制仍然不清楚,尤其以低熱值燃料、氣化煤氣、氣化生質能等燃料為主的多重成份燃料。目前大部份燃燒研究針對單一燃料為主並詳細探討各種單一燃料之燃燒特性與燃燒機構之研究相當完備,而對低熱值多重成份氣態組合燃料的燃燒現象而言,其燃燒特性與反應機制是無法使用各種不同單一燃料的燃燒特性與反應機制直接加成,在有限現有研究明顯指出混合燃料與單一燃料明顯不同,適當調和可以比各單一燃料高出數倍燃燒效果,尤其是影響燃燒效率與燃燒室設計的燃燒速度與吹熄穩定極限等。
    因此,在本研究中使用甲烷與一氧化碳混合氣體之探討做為一系列混合燃料研究的開始。混合燃料以人工方式調配並且利用對衝流火焰燃燒器加以燃燒,而且利用實驗法與數值模擬探討火焰外觀、燃燒速度,與燃料之可燃極限。在數值模擬部份,利用Chemkin 3.7搭配GRI 3.0反應機構所得之資料與實驗結果互相比對。除此之外,更利用靈敏度分析來探討燃燒中之主導機制。
    結果顯示當燃料中甲烷的成分為10%時火焰的燃燒速度可以達到最大值,根據靈敏度分析的結果顯示當甲烷成分介於10%-100%時燃燒反應主要由甲烷控制,相反的當甲烷成分小於10%時反應主導機制由一氧化碳控制。

    Abstract
    Subject:A study of Combustion Characteristics for Blended Fuels
    Student:Chun-Hung Tien
    Adviser : Yei-Chin Chao

    It will be a potential method to apply the fuels with multi-compositions as the energy source in future. Up to now, the combustion characteristics, mechanisms, and mutual interaction between species are still unclear especially for low-calorific fuels, gasified coal, gasified biomass and etc…In the past, research and efforts are mostly invested on combustion characteristics and reaction mechanisms of single component of high-grade fuels. From the limited research reports, it is clearly shown that the combustion behaviors and reaction mechanisms for the blended fuels is usually completely different from each component and can not be estimated by simple summation based on the proportion and the major combustor design parameters such as the flame velocity and the lean blowout limits can be enhanced by several folds by proper blending proportion.
    Hence, the study of mutual interaction between fuels started with the binary mixture of methane and carbon monoxide. The fuels blended artificially and burned with a counterflow burner. A series of experimental method and simulation are performed to delineate the flame characteristics including qualitative flame appearances, burning velocity, flammable limits. In simulation, the data calculated by Chemkin 3.7 with GRI 3.0 mechanisms are compared with experimental results. In addition, sensitively analyses are also performed to verify the dominated reaction mechanisms.
    The results show that when the concentration of methane in CO-CH4 mixture fuels is increased to 10%, the burning velocity increased to a maximum value. According to the results of sensitivity analysis, the combustion dominated by methane when the concentration of methane is lies between 10% and 100%. Conversely, the reaction mechanism is dominated by CO when the concentration of methane less than 10%.

    目錄 摘要 IV Abstract VI 目錄 VIII 圖表目錄 XI 符號表 XIV 第一章 緒論 1 第二章 文獻回顧與研究動機 3 2-1 文獻探討 3 2-1-1 混合燃料與燃燒 3 2-2問題分析 12 2-2-1燃燒速度 12 2-2-2 可燃極限 13 2-2-3 化學反應機構 14 2-3 研究動機 16 2-4 研究目標 17 第三章 實驗設備 19 3-1 實驗設備與條件 19 3-1-1 燃料與空氣之供應 19 3-1-2 噴嘴與邊界系統 19 3-2 實驗設備及其原理 21 3-2-1影像處理系統 21 3-2-2 數據擷取系統 21 3-2-3溫度量測系統 22 第四章 數值方法 24 4-1 數值方法 24 4-1-1 Equil-code 24 4-1-2 Premixed code 25 4-1-3 Spin code: 25 4-2化學反應機構 26 4-3 靈敏度分析 27 第五章 結果與討論 29 5-1初步規劃 29 5-1-1估算可燃極限 29 5-1-2估算絕熱火焰溫度 29 5-1-3估算燃燒速度 30 5-2 火焰結構觀察 31 5-2-1 噴流火焰的觀察 31 5-2-2 平火焰的觀察 32 5-3 溫度量測 33 5-3-1 噴流火焰溫度量測 33 5-3-2 平火焰溫度量測 34 5-4 跳脫速度(Blow off velocity)的量測 34 5-5 燃燒速度的計算 35 5-6 燃燒結構的分析 37 5-7靈敏度分析 41 5-8綜合討論 42 第六章 結論與未來工作 44 6-1 結論 44 6-2 未來工作 46 參考文獻 47 圖表目錄 表1 混合燃料(CO+CH4)在不同燃料間比例下,各個物種的體積比與相對應的係數 51 表 2 常見燃料之燃燒特性 52 表 3 平火焰實驗參數表 53 圖 2-1暴露於一氧化碳時間與濃度對人體的影響 54 圖 3-1 平焰爐(a) 55 圖 3-1 平焰爐(b) 55 圖 3-2 實驗設備簡圖 56 圖 5-1 混合燃料的可燃極限 57 圖 5-2(a) 混合燃料(H2+CH4)的絕熱火燄溫度 58 圖 5-2(b) 混合燃料(CO+CH4)的絕熱火燄溫度 58 圖 5-2(c) 混合燃料(CO+H2)的絕熱火燄溫度 59 圖 5-3(a) 混合燃料(CO+H2)與燃燒速度的關係 60 圖 5-3(b) 混合燃料(H2+CH4)與燃燒速度的關係 60 圖 5-3(c)混合物燃料(CO+CH4)之燃燒速度與不同燃料比例的關係 61 圖 5-5 混合燃料(CO+CH4)於不同當量比之平火燄觀察 63 圖5-6 當量比=0.8,噴流火焰溫度分佈 64 圖5-7 平火焰溫度量測 65 圖5-8 跳脫速度量測 66 圖5-9 燃燒速度之數值模擬比對 67 圖5-10(a) 混合物(CO+CH4)之燃燒速度與當量比的關係 68 圖5-10(b) 混合物(CO+CH4)之燃燒速度與當量比的關係 68 圖5-11(a) 混合燃料(100%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 69 圖5-11(b) 混合燃料(10%CO+90%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 70 圖5-11(c) 混合燃料(50%CO+50%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 71 圖5-11(d) 混合燃料(90%CO+10%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 72 圖5-11(e) 混合燃料(94%CO+6%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 73 圖5-11(f) 混合燃料(98%CO+2%CH4),主要反應粒子的濃度沿著軸向分佈變化圖 74 圖5-11(g) 混合燃料(100%CO),主要反應粒子的濃度沿著軸向分佈變化圖 75 圖5-12混合燃料(CO+CH4)中CO於停滯流平火焰的變化 76 圖5-13 靈敏度分析 77

    參考文獻
    Adouane, B., Hoppesteyn, P., Jong, W. D., Wel, M. V. D., Hein, K. R. G. and Spliethoff H. (2002) “Gas turbine combustor for biomass derived LCV gas, a first approach toward fuel-NOx modeling and experiment validation” Applied Thermal Engineering, Vol. 22, pp. 959-970
    Barlow, R. S., Bilger, R.W., Dibble R. W. and Stårner, S.H. (1991)“Pilot Diffusion Flames of CO/CH4/N2 and CO/H2/N2 Near Extinction” Combustion and Flame, vol. 83, pp. 63-74
    Bridgwater, A. V. (1995) “The Technical and Economic Feasibility of Biomass Gasification for Power Generation” Fuel, vol 74, No.5, pp. 631-653
    Brown, M. J., Mclean, I. C., Smith, D. B. and Taylor S. C. (1996)“Markstein Lengths of CO/H2/Air Flames, Using Expanding Spherical Flames” 26-th Symposium (International) on combustion/The Combustion Institute, pp.875-881
    Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G. P., Golden, D. A., Frenklach, M., (1995)
    http:// www.me.berkeley.edu/gri_mech/
    Chao, B. H., Egolfopolos, F. N. and Law, C. K. (1997) “Structure and Propagation of Premixed Flame in Nozzle-Generated Counterflow” Combustion and Flame, vol. 109, pp. 620-638
    Chomiak, J. , Longwell, J. P. and Sarofim A. F. (1989) “Combudtion of Low Calorific Value Gases : Problems and Prospects” Prog. Energy Combust. Sci , vol. 15, pp 109-129
    Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E, Rupley, F. M., and Gacar, J. F. (1991) SPIN(Version3.83) : A Fortran Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor Deposition Reactors, Sandia National Laboratories Report SAND91-8003.
    Dryer, F. L. and Glassman, I. (1973) “High-Temperature Oxidation of CO and CH4” 24-th Symposium (International) on combustion/The Combustion Institute, pp.987-1003
    Fang, M., Luo, Z., Li, X., Wang, Q., Ni, M and Cen, K. (1997) “ A Multi-Product Cogeneration System Using Combined Coal and Combustinn” Energy Vol. 23, No. 3, pp. 203-212
    Heffington, W. M., Gaines, W. R. and Renfroe D. A. (1983) “Flammability Limits of Coal-Drived Low-BTU Gas Mixtures Containing Large Amounts of Inert Gases” Combustion Science and Technology, Vol 36, pp. 191-197
    Hoppesteyn, P. D., Jong, W. D. and Hein, K. R. G. (1998) “Coal Gasification and Combustion of LCV Gas” Biosource Technology, Vol. 65, pp. 105-115
    Hustad, J. E. and Sønju, O. K. (1988) “Experiment Studies of Lower Flammability Limits of Gases and Mixtures of Gases at Elevated Temperatures” Combustion and Flame, Vol. 71, pp. 283-294
    Karim, G. A., Wierzba, I., Al-Alousi, Y. (1996) “Methane-Hydrogen Mixtures as Fuels” Int. J. Hydrogen Energy Vol. 21 No. 7 pp. 625-631
    Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A. (1985) “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames”, Sandia National Laboratories SAND 85-8240.
    Masri, A. R., Dibble, R. W. and Barlow R. S. (1992) “Chemical Kinetics Effects in Nonpremixed Flames of H2/CO2 Fuel” Combustion and Flame, Vol. 91, pp. 285-309
    Morrison, R. J. S., Charlston-Goth, D., Chadwick, B. L., Campisi, A., Thomsen, D. D. and Laurendeau, N. M. (2001) “laser-induced Fluorescence Measurements and Modeling of Nitric Oxide in Premixed Flames of CO+H2+CH4 and Air at High Pressures” Combustion and Flame, Vol. 125, pp. 729-743
    Morten Fossum, Ranveig V. Beyer (1998) “Co-combustion: Biomass Fuel Gas and Natural Gas” http://www.energy.sintef.no/
    Mclean, I. C., Smith, D. B. and Taylor, S. C. (1994) “The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction” 25-th Symposium (International) on combustion/The Combustion Institute, pp.794-757
    Scholte, T. G. and Vaggs, P. B. (1959) “Burning velocity of mixtures of hydrogen, carbon monoxide a nd methane with air” Combustion and Flame, vol. 3, pp. 511-524
    Scholte, T. G. and Vaggs, P. B. (1959) “The Burning Velocity of hydrogen-Air Mixture and Mixtures of Some
    Sher, E and Ozdor, N (1992) “Laminar Burning velocity of n-Butane/Air Mixtures Enriched with Hydrogen” Combustion and Flame, vol. 89, pp. 214-220
    Rightley, M. L. and Williams, F. A. (1997) “Burning Velocity of CO Flames” Combustion and Flame, vol. 110,pp. 285-297
    Refael, S. and Sher, E. (1989) “Reaction Kinetics of Hydrogen-Enriched Methane-Air and Propane-Air Flames” Combustion and Flame, vol. 78, pp. 326-338
    Ren, J.-Y., Egolfopolos, F. N. and Tsotsis, T. T. (2002) “NOx Emission Control of Lean Methane-Air Combustion with Addition of Methane Reforming Products” Combust. Sci. and Tech., vol. 174, pp. 185-205
    Ren, J.-Y., Qin. W., Egolfopolos, F. N., Mark, H. and Tsotsis, T. T (2001) “Methane Reforming and Its Potential Effect on Efficiency and Pollution Emissions of Lean Methane-Air Combustion” Chemical Engineering Science, vol. 56, pp.1541-1549
    Ren, J.-Y., Qin. W., Egolfopolos, F. N., Mark, H. and Tsotsis, T. T (2001) “Strained-Rated effects on Hydrogen-Enhanced Lean Premixed Combustion” Combustion and Flame, vol. 124, pp. 717-720
    Reynolds, W.C. (1986) “The Element Potential Method For Chemical Equilibrium Analysis: Implementation in the Interactive Program” Department of Mechanical Engineering, Stanford University
    Rightlet, M. L. and Williams, F. A. (1995)“Approximations for Structures of Wet CO flames with One-Step reduced chemistry” Combustion and Flame, vol. 101, pp. 287-301
    Robinson, A.L., Junker, H., Buckley, S.G., Sclippa, G. and Baxter L. L. (1998) “Interaction Between Coal and Biomass When Cofiring” 27-th Symposium (International) on combustion/The Combustion Institute, pp. 1351-1359
    Vagelopulos, C. M. and Egolfopolos, F. N. (1994) “Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide with Hydrogen, Methane and Air” 25-th Symposium (International) on combustion/The Combustion Institute, pp.1317-1323
    Warnatz, J (1981) “The Structure of Laminar Alkane-,Alkene-,
    Acetylene Flames” 18th Symp. (Intl) Comb, The Combustion Institute, Pittsburgh, p369
    Wang, W. and Rogg, B. (1993) “Reduced Kinetic Mechanisms and Their Numerical treatmentⅠ:Wet CO Flames” Combustion and Flame, Vol. 94, pp. 271-292
    Yetter, R. A. and Dryer, F. L. (1992) “Inhibition of Moist Carbon Monoxide Oxidation by Trace Amounts of Hydrocarbons” 24-th Symposium (International) on Combustion/The Combustion Institute, pp.757-767
    Yetter, R. A., Dryer, F. L. and Rabitz, H. (1991) “A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics” Combust. Sci. Tech., vol.79, pp. 97-128
    Yu, G., Law, C. K. and Wu C. K. (1986) “Laminar Flame Speeds of Hydrogen + Air Mixtures with Hydrogen Addition” Combustion and Flame, vol. 63, pp. 339-347
    Yumlu, V. S. (1967) “Prediction of Burning Velocities of Carbon Monoxide-Hydrogen-Air Flames” Combustion and Flame, Vol. 11, pp. 190-194
    陳冠邦“氣化生質能於白金蜂巢式反應器觸媒燃燒之研究” 國立成功大學航空太空研究所博士論文,中華民國91年1月,2001。

    下載圖示 校內:立即公開
    校外:2004-09-16公開
    QR CODE