研究生: |
田俊宏 Tien, Chun-Hung |
---|---|
論文名稱: |
混合燃料燃燒特性之研究 A STUDY OF COMBUSTION CHARACTERISTICS FOR BLENDED FUELS |
指導教授: |
趙怡欽
Chao, Yei-Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 混合燃料 、燃燒特性 、數值模擬 、對衝流燃燒 |
外文關鍵詞: | blended fuels, combublended fuels, combustion characteristics, simulation, counterflow combustion |
相關次數: | 點閱:133 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
題目:混合燃料燃燒特性之研究
研究生:田俊宏
指導教授:趙怡欽
多重成份燃料在未來當成能量的來源是一種相當有潛力的方式,直到現在,多重成份燃料之燃燒特性包括燃燒速度、以及成份間之互相影響機制仍然不清楚,尤其以低熱值燃料、氣化煤氣、氣化生質能等燃料為主的多重成份燃料。目前大部份燃燒研究針對單一燃料為主並詳細探討各種單一燃料之燃燒特性與燃燒機構之研究相當完備,而對低熱值多重成份氣態組合燃料的燃燒現象而言,其燃燒特性與反應機制是無法使用各種不同單一燃料的燃燒特性與反應機制直接加成,在有限現有研究明顯指出混合燃料與單一燃料明顯不同,適當調和可以比各單一燃料高出數倍燃燒效果,尤其是影響燃燒效率與燃燒室設計的燃燒速度與吹熄穩定極限等。
因此,在本研究中使用甲烷與一氧化碳混合氣體之探討做為一系列混合燃料研究的開始。混合燃料以人工方式調配並且利用對衝流火焰燃燒器加以燃燒,而且利用實驗法與數值模擬探討火焰外觀、燃燒速度,與燃料之可燃極限。在數值模擬部份,利用Chemkin 3.7搭配GRI 3.0反應機構所得之資料與實驗結果互相比對。除此之外,更利用靈敏度分析來探討燃燒中之主導機制。
結果顯示當燃料中甲烷的成分為10%時火焰的燃燒速度可以達到最大值,根據靈敏度分析的結果顯示當甲烷成分介於10%-100%時燃燒反應主要由甲烷控制,相反的當甲烷成分小於10%時反應主導機制由一氧化碳控制。
Abstract
Subject:A study of Combustion Characteristics for Blended Fuels
Student:Chun-Hung Tien
Adviser : Yei-Chin Chao
It will be a potential method to apply the fuels with multi-compositions as the energy source in future. Up to now, the combustion characteristics, mechanisms, and mutual interaction between species are still unclear especially for low-calorific fuels, gasified coal, gasified biomass and etc…In the past, research and efforts are mostly invested on combustion characteristics and reaction mechanisms of single component of high-grade fuels. From the limited research reports, it is clearly shown that the combustion behaviors and reaction mechanisms for the blended fuels is usually completely different from each component and can not be estimated by simple summation based on the proportion and the major combustor design parameters such as the flame velocity and the lean blowout limits can be enhanced by several folds by proper blending proportion.
Hence, the study of mutual interaction between fuels started with the binary mixture of methane and carbon monoxide. The fuels blended artificially and burned with a counterflow burner. A series of experimental method and simulation are performed to delineate the flame characteristics including qualitative flame appearances, burning velocity, flammable limits. In simulation, the data calculated by Chemkin 3.7 with GRI 3.0 mechanisms are compared with experimental results. In addition, sensitively analyses are also performed to verify the dominated reaction mechanisms.
The results show that when the concentration of methane in CO-CH4 mixture fuels is increased to 10%, the burning velocity increased to a maximum value. According to the results of sensitivity analysis, the combustion dominated by methane when the concentration of methane is lies between 10% and 100%. Conversely, the reaction mechanism is dominated by CO when the concentration of methane less than 10%.
參考文獻
Adouane, B., Hoppesteyn, P., Jong, W. D., Wel, M. V. D., Hein, K. R. G. and Spliethoff H. (2002) “Gas turbine combustor for biomass derived LCV gas, a first approach toward fuel-NOx modeling and experiment validation” Applied Thermal Engineering, Vol. 22, pp. 959-970
Barlow, R. S., Bilger, R.W., Dibble R. W. and Stårner, S.H. (1991)“Pilot Diffusion Flames of CO/CH4/N2 and CO/H2/N2 Near Extinction” Combustion and Flame, vol. 83, pp. 63-74
Bridgwater, A. V. (1995) “The Technical and Economic Feasibility of Biomass Gasification for Power Generation” Fuel, vol 74, No.5, pp. 631-653
Brown, M. J., Mclean, I. C., Smith, D. B. and Taylor S. C. (1996)“Markstein Lengths of CO/H2/Air Flames, Using Expanding Spherical Flames” 26-th Symposium (International) on combustion/The Combustion Institute, pp.875-881
Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Lissianski, V., Smith, G. P., Golden, D. A., Frenklach, M., (1995)
http:// www.me.berkeley.edu/gri_mech/
Chao, B. H., Egolfopolos, F. N. and Law, C. K. (1997) “Structure and Propagation of Premixed Flame in Nozzle-Generated Counterflow” Combustion and Flame, vol. 109, pp. 620-638
Chomiak, J. , Longwell, J. P. and Sarofim A. F. (1989) “Combudtion of Low Calorific Value Gases : Problems and Prospects” Prog. Energy Combust. Sci , vol. 15, pp 109-129
Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E, Rupley, F. M., and Gacar, J. F. (1991) SPIN(Version3.83) : A Fortran Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor Deposition Reactors, Sandia National Laboratories Report SAND91-8003.
Dryer, F. L. and Glassman, I. (1973) “High-Temperature Oxidation of CO and CH4” 24-th Symposium (International) on combustion/The Combustion Institute, pp.987-1003
Fang, M., Luo, Z., Li, X., Wang, Q., Ni, M and Cen, K. (1997) “ A Multi-Product Cogeneration System Using Combined Coal and Combustinn” Energy Vol. 23, No. 3, pp. 203-212
Heffington, W. M., Gaines, W. R. and Renfroe D. A. (1983) “Flammability Limits of Coal-Drived Low-BTU Gas Mixtures Containing Large Amounts of Inert Gases” Combustion Science and Technology, Vol 36, pp. 191-197
Hoppesteyn, P. D., Jong, W. D. and Hein, K. R. G. (1998) “Coal Gasification and Combustion of LCV Gas” Biosource Technology, Vol. 65, pp. 105-115
Hustad, J. E. and Sønju, O. K. (1988) “Experiment Studies of Lower Flammability Limits of Gases and Mixtures of Gases at Elevated Temperatures” Combustion and Flame, Vol. 71, pp. 283-294
Karim, G. A., Wierzba, I., Al-Alousi, Y. (1996) “Methane-Hydrogen Mixtures as Fuels” Int. J. Hydrogen Energy Vol. 21 No. 7 pp. 625-631
Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A. (1985) “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames”, Sandia National Laboratories SAND 85-8240.
Masri, A. R., Dibble, R. W. and Barlow R. S. (1992) “Chemical Kinetics Effects in Nonpremixed Flames of H2/CO2 Fuel” Combustion and Flame, Vol. 91, pp. 285-309
Morrison, R. J. S., Charlston-Goth, D., Chadwick, B. L., Campisi, A., Thomsen, D. D. and Laurendeau, N. M. (2001) “laser-induced Fluorescence Measurements and Modeling of Nitric Oxide in Premixed Flames of CO+H2+CH4 and Air at High Pressures” Combustion and Flame, Vol. 125, pp. 729-743
Morten Fossum, Ranveig V. Beyer (1998) “Co-combustion: Biomass Fuel Gas and Natural Gas” http://www.energy.sintef.no/
Mclean, I. C., Smith, D. B. and Taylor, S. C. (1994) “The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction” 25-th Symposium (International) on combustion/The Combustion Institute, pp.794-757
Scholte, T. G. and Vaggs, P. B. (1959) “Burning velocity of mixtures of hydrogen, carbon monoxide a nd methane with air” Combustion and Flame, vol. 3, pp. 511-524
Scholte, T. G. and Vaggs, P. B. (1959) “The Burning Velocity of hydrogen-Air Mixture and Mixtures of Some
Sher, E and Ozdor, N (1992) “Laminar Burning velocity of n-Butane/Air Mixtures Enriched with Hydrogen” Combustion and Flame, vol. 89, pp. 214-220
Rightley, M. L. and Williams, F. A. (1997) “Burning Velocity of CO Flames” Combustion and Flame, vol. 110,pp. 285-297
Refael, S. and Sher, E. (1989) “Reaction Kinetics of Hydrogen-Enriched Methane-Air and Propane-Air Flames” Combustion and Flame, vol. 78, pp. 326-338
Ren, J.-Y., Egolfopolos, F. N. and Tsotsis, T. T. (2002) “NOx Emission Control of Lean Methane-Air Combustion with Addition of Methane Reforming Products” Combust. Sci. and Tech., vol. 174, pp. 185-205
Ren, J.-Y., Qin. W., Egolfopolos, F. N., Mark, H. and Tsotsis, T. T (2001) “Methane Reforming and Its Potential Effect on Efficiency and Pollution Emissions of Lean Methane-Air Combustion” Chemical Engineering Science, vol. 56, pp.1541-1549
Ren, J.-Y., Qin. W., Egolfopolos, F. N., Mark, H. and Tsotsis, T. T (2001) “Strained-Rated effects on Hydrogen-Enhanced Lean Premixed Combustion” Combustion and Flame, vol. 124, pp. 717-720
Reynolds, W.C. (1986) “The Element Potential Method For Chemical Equilibrium Analysis: Implementation in the Interactive Program” Department of Mechanical Engineering, Stanford University
Rightlet, M. L. and Williams, F. A. (1995)“Approximations for Structures of Wet CO flames with One-Step reduced chemistry” Combustion and Flame, vol. 101, pp. 287-301
Robinson, A.L., Junker, H., Buckley, S.G., Sclippa, G. and Baxter L. L. (1998) “Interaction Between Coal and Biomass When Cofiring” 27-th Symposium (International) on combustion/The Combustion Institute, pp. 1351-1359
Vagelopulos, C. M. and Egolfopolos, F. N. (1994) “Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide with Hydrogen, Methane and Air” 25-th Symposium (International) on combustion/The Combustion Institute, pp.1317-1323
Warnatz, J (1981) “The Structure of Laminar Alkane-,Alkene-,
Acetylene Flames” 18th Symp. (Intl) Comb, The Combustion Institute, Pittsburgh, p369
Wang, W. and Rogg, B. (1993) “Reduced Kinetic Mechanisms and Their Numerical treatmentⅠ:Wet CO Flames” Combustion and Flame, Vol. 94, pp. 271-292
Yetter, R. A. and Dryer, F. L. (1992) “Inhibition of Moist Carbon Monoxide Oxidation by Trace Amounts of Hydrocarbons” 24-th Symposium (International) on Combustion/The Combustion Institute, pp.757-767
Yetter, R. A., Dryer, F. L. and Rabitz, H. (1991) “A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics” Combust. Sci. Tech., vol.79, pp. 97-128
Yu, G., Law, C. K. and Wu C. K. (1986) “Laminar Flame Speeds of Hydrogen + Air Mixtures with Hydrogen Addition” Combustion and Flame, vol. 63, pp. 339-347
Yumlu, V. S. (1967) “Prediction of Burning Velocities of Carbon Monoxide-Hydrogen-Air Flames” Combustion and Flame, Vol. 11, pp. 190-194
陳冠邦“氣化生質能於白金蜂巢式反應器觸媒燃燒之研究” 國立成功大學航空太空研究所博士論文,中華民國91年1月,2001。