| 研究生: |
朱柏翰 Chu, Po-Han |
|---|---|
| 論文名稱: |
微細放電加工之加工參數對表層特性之影響 The Effect of Working Parameters on Surface Integrity by Micro-EDM Process |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 衝擊因子 、微細放電加工 、表面裂紋 、表層特性 |
| 外文關鍵詞: | Duty Factor, Surface Cracks, Micro-EDM, Surface Integrity |
| 相關次數: | 點閱:119 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的主要探討微細放電加工參數對加工表層特性之影響。利用放電研磨法(EDG)及線放電加工法(WEDG)將碳化鎢電極加工至電極尺寸150μm,針對試件SKD11進行1mm深度的微孔加工。加工完成後,分別量測與觀察擴孔量、電極消耗、實際加工深度、電極消耗長度與試件加工深度之消耗比、白層厚度以及表面裂紋與形貌,所得結果再與加工參數進行討論。
本研究主要分為兩個部分,首先選取放電電流與放電持續時間為放電製程參數,進行全因素實驗以探究兩種放電加工參數與放電加工後表層特性之關係。第二部分則利用第一階段的全因素實驗求得之適用放電加工參數,探討Duty Factor對放電表層特性的影響。
研究結果顯示,若放電電流選用0.1A-0.3A且放電持續時間採用15μs以下,除了加工時間可控制在15分鐘以內,擴孔形貌可保持完整,實際加工深度穩定且加工效率較佳之外,白層厚度可維持在2.5μm~4μm範圍內且單一參數的白層表面起伏程度降低,表面裂紋數量少且裂紋形態單一,其幾乎為穿孔裂紋。
在Duty Factor方面,隨著衝擊因子提高,不論擴孔量、實際加工深度、白層平均厚度以及表面裂紋數量等都有微幅的提升,且孔底形貌逐漸形成尖錐狀。此外,當放電持續時間設定在2μs及6μs時,Duty Factor增加可降低加工時間進而提升加工速率,但是當放電持續時間縮短至0.5μs時,Duty Factor增加反而延長加工時間,導致加工效率降低。
This study evaluates the effects of working parameters on surface integrity of micro-holes drilled by the Micro-EDM process. Micro electrodes with 150μm in diameter were manufactured by EDG and WEDG, and used to drill blind holes with depth of 1 mm on tool steel SKD11. Effects of hole enlargement, electrode wear, hole machining depth, wear ratio, thickness of white layer, and surface crack were analyzed.
There are two main concerns in this study. First , pulse current and pulse-on duration were selected as the working parameters for full factorial experiment to get the relationship between these two parameters and surface integrity. Second, using these parameters acquired from part one to study the effects of Duty Factor on surface integrity.
Experimental results revealed that the optimum surface integrity was obtained when pulse current was selected in the range from 0.1 A to 0.3A and pulse-on duration was below 15μs, where the white layer thickness maintained at 2.5μm-4.0μm , minimum surface roughness , less surface crack and most of them were pore cracks.
Moreover, hole enlargement, hole machining depth, and mean thickness of white layer were all increased with increasing the Duty Factor, and blind holes tend to be cone-shaped. When pulse-on duration was 2μs or 6μs, increasing the Duty Factor can also increase the material removal rate. However, when the pulse-on duration was down to 0.5μs, increasing the Duty Factor will increase the working time so as to lower the material removal rate.
-參考文獻-
[1] 井上潔著, 黃錦鐘譯, “放電加工”, 高立圖書有限公司, 1998.
[2] D. Y. Sheu, and T. Masuzawa, “Development of large-scale production of microholes by EDM”, Proceedings of the 13th International Symposium for Electromaching ( ISEM XIII), vol. 1, 2001, pp. 747-757.
[3] M. S. Cheong, D. W. Cho, and K. F. Ehmann, “Identification and control for micro- drilling productivity enhancement”, International Journal of Machine Tools and Manufacture vol. 39, 1999, pp. 1539-1561.
[4] L. C. Lim, L. C. Lee, Y. S. Wong, and H. H. Lu, “Solidification microstructure of electrodischarge machined surfaces of tool steels”, Materials Science and Technology, vol. 7, No.3, 1991, pp. 239-248.
[5] B. Bozkurt, A. M. Gadalla, and P. T. Eubank, “Simulation of erosion in a single discharge EDM process”, Materials and Manufacturing Processes, vol. 11, No.4, 1996, pp. 555-563.
[6] C. P. Tabrett, “The electro-discharge machining surfaces of high-chromium white irons”, Journal of Materials Science Letters, vol. 15, 1996, pp. 1792-1794.
[7] N. Taniguchi, “Current status in, and future trends of, ultraprecision machining and ultrafine materials processing”, Annals of the CIRP, vol. 32, No. 2, 1983, pp. 573-582.
[8] R. Snoeys, F. Staelens, and W. Dekeyser, “Current trends in non-conventional materials removal processes”, Annals of the CIRP, vol. 35, No. 2, 1986, pp. 467-480.
[9] T. Masuzawa, “Micro-EDM”, Proceedings of the 13th International Symposium for Electromaching ( ISEM XIII), vol. 1, 2001, pp. 3-19.
[10] 戴子堯, “放電加工之電極尺寸與加工參數對工具鋼表層特性之研究”, 國立成功大學機械工程研究所博士論文, 2004.
[11] D. M. Allen, and A. Lecheheb, “Micro electro-discharge machining of ink iet nozzles:optimum selection of material and machining parameters”, Journal of Materials Processing Technology, vol. 58, 1996, pp. 53-66.
[12] T. Masaki, K. Kawata, and T. Masuzawa, “Micro electro-discharge machining and its applications”, Micro Electro Mechanical Systems (IEEE), 1990, pp. 21-26.
[13] R. Bormann, “Understanding die-sinking EDM surface integrity”, Carbide and Tool Journal, 1991, pp. 12-16.
[14] 張渭川譯, “放電加工的結構與實用技術”, 全華科技圖書股份有限公司, 1993.
[15] 仁雄, “放電加工技術之現狀與將來”, 機械技術, vol. 161, 1998, pp. 220-226.
[16] N. F. Petrofes, and A. M. Gadalla, “Processing aspects of shaping advanced materials by electrical discharge machining”, Materials and Manufacturing Processes, vol. 13, No.1, 1988, pp. 127-157.
[17] D. D. Dibitonto, P. T. Eubank, M. R. Patel, and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model”, Journal of Applied Physics, vol. 66, No.9, 1989, pp. 4095-4103.
[18] M. R. Patel, M. A. Barrufet, P. T. Eubank, and D. D. Dibitonto, “Theoretical models of the electrical discharge machining process II. The anode erosion model”, Journal of Applied Physics, vol. 66, No.9, 1989, pp. 4104-4111.
[19] A. Erden, F. Arinc, and M. kogmen, “Comparison of mathematical models for electric discharge machining”, Journal of Materials Processing & Manufacturing Science, vol. 4, 1995, pp. 163-175.
[20] Y. H. Jeong, and B. K. Min, “Geometry prediction of EDM-drilled holes and tool electrode shapes of micro-EDM process using simulation”, International Journal of Machine Tools and Manufacture, vol. 47, 2007, pp. 1817-1826.
[21] S. H. Yeo, W. Kurnia, and P. C. Tan, “Electro-thermal modelling of anode and cathode in micro-EDM”, Journal of Applied Physics, vol. 40, 2007, pp. 2513-2521.
[22] M. A. E.-R. Merdan, and R. D. Arnell, “The Surface Integrity of a Die Steel After Electrodischarge Machining. II. Residual Stress Distribution”, Surface Engineering, vol. 7, No. 2, 1991, pp. 154-158.
[23] M. P. Jahan, Y. S. Wong, and M. Rahman, “A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator”, journal of Materials Processing Technology, 2008.
[24] T. Masuzawa, M. Fujino, K. Kobayashi, and T. Suzuki, “Study on micro-hole drilling by EDM - automatic electrode forming with traveling wire”, Bulletin of Japan Society of Precision Engineering, vol. 20, No. 2, 1986, pp. 117-120.
[25] T. Kawakami, and M. Kunieda, “Study on factors determining limits of minimum machinable size in micro EDM”.
[26] M. Yamazaki, T. Suzuki, N. Mori, and M. Kunieda, “EDM of micro-rods by self-drilled holes”, Journal of Materials Processing Technology, vol. 149, 2004, pp. 134-138.
[27] 莊殷, 許富銓, 謝明倫與李驊登, “微細電極製作方法與微放電铣削技術之研究”, 中國機械工程學會第二十五屆全國學術研討會論文集, 2008.
[28] J. P. Kruth, and K. U. Leuven, “Study of white layer of a surface machined by die-sinking electro-discharge machining”, Annals of the CIRP, vol. 44, 1995.
[29] P. M. Lonardo, and A. A. Bruzzone, “Effect of flushing and electrode material on die sinking EDM”, Annals of the CIRP, vol. 48, 1999.
[30] F. Ghanem, C. Braham, and H. Sidhom, “Influence of steel type on electrical discharge machined surface integrity”, Journal of Materials Processing Technology, vol. 142, 2003, pp. 163-173.
[31] H. T. Lee, and T. Y. Tai, “Relationship between EDM parameters and surface crack formation”, Journal of Materials Processing Technology, vol. 142, 2003, pp. 676-683.
[32] R. A. Mahdavinejad, and A. Mahdavinejad, “ED machining of WC-Co”, Journal of Materials Processing Technology, vol. 162-163, 2005, pp. 637-643.
[33] B. Ekmekci, O. Elkoca, and A. Erden, “A Comparative Study on the Surface Integrity of plastic mold steel due to electric discharge machining”, Metallurgical and Materials Transactions B, vol. 36B, 2005, pp. 117-124.
[34] Y. H. Guu, “AFM surface imaging of AISI D2 tool steel machined by the EDM process”, Applied Surface Science, vol. 242, 2005, pp. 245-250.
[35] M. Y. Ali, M. R. Rosfazila, and E. Rosnita, “Geometrical integrity of microholes drilled by conventional and micro electrical discharge machining”, pp. 731-739.
[36] Z. Y. Yu, K. P. Rajurkar, and H. Shen, “High aspect ratio and complex shaped blind micro holes by micro EDM”.
[37] L. Li, C. Diver, J. Atkinson, R. G. Wagner, and H. J. Helml, “ Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture”, Annals of the CIRP, vol. 55, 2006.
[38] K. Kanlayasiri, and S. Boonmung, “An investigation on effects of wire-EDM machining parameters on surface roughness of newly developed DC53 die steel”, Journal of Materials Processing Technology, vol. 187-188, 2007, pp. 26-29.
[39] B. Ekmekci, “Residual stresses and white layer in electric discharge machining (EDM) ”, Applied Surface Science, vol. 253, 2007, pp. 9234-9240.
[40] B. Bhattacharyya, S. Gangopadhyay, and B. R. Sarkar, “Modelling and analysis of EDMed job surface integrity”, Journal of Materials Processing Technology, vol. 189, 2007, pp. 169-177.
[41] Y. Ito, R. Tanabe, and N. Mohri, “Self-sharpening of thin tungsten electrode in single, high-current discharge its dynamics and mechanism”, Annals of the CIRP, vol. 56, 2007, pp. 229-232.
[42] J. Marafona, “Black layer characterisation and electrode wear ratio in electrical discharge machining (EDM)”, Journal of Materials Processing Technology, vol. 184, 2007, pp. 27-31.
[43] M. Kiyak, and O. Cakir, “Examination of machining parameters on surface roughness in EDM of tool steel”, Journal of Materials Processing Technology, vol. 191, 2007, pp. 141-144.
[44] M. P. Jahan, Y. S. Wong, and M. Rahman, “A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials”, Journal of Materials Processing Technology, 2008.
[45] J. D. Marafona, and A. Araujo, “Influence of workpiece hardness on EDM performance”, International Journal of Machine Tools and Manufacture, vol. 49, 2009, pp. 744-748.
[46] T. Y. Tai, and S. J. Lu, “Improving the fatigue life of electro-discharge-machined SKD11 tool steel via the suppression of surface cracks”, International Journal of Fatigue, vol. 31, 2009, pp. 433-438.
[47] Y. S. Wong, L. C. Lim, L. Rahuman, and W. M. Tee, “Near-mirror-finish phenomenon in EDM using powder-mixed dielectric”, Journal of Materials Processing Technology, vol. 79, 1998, pp. 30-40.
[48] P. Pecas, and E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining”, International Journal of Machine Tools and Manufacture vol. 43, 2003, pp. 1465-1471.
[49] K. L. Wu, B. H. Yan, F. Y. Huang, and S. C. Chen, “ Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric”, International Journal of Machine Tools and Manufacture, vol. 45, 2005, pp. 1195-1201.
[50] P. Pecas, and E. Henriques, “Electrical discharge machining using simple and powder-mixed dielectric:The effect of the electrode area in the surface roughness and topography”, Journal of Materials Processing Technology, vol. 200, 2008, pp. 250-258.
[51] 邴兆齊, “放電加工鑽孔法量測殘留應力之可行性分析”, 成功大學機械工程研究所碩士論文, 1994.
[52] 葉麗雅, “放電加工鑽孔法量測殘留應力之應用研究”, 成功大學機械工程研究所碩士論文, 1995.
[53] 楊永名, “放電加工參數與加工表面特性對量測殘留應力之影響評估”, 成功大學機械工程研究所碩士論文, 1996.
[54] 童文煥, “放電加工鑽孔白層與引進殘留應力之關連性研究”, 成功大學機械工程研究所碩士論文, 1998.
[55] 林培欽, “放電加工鑽孔引進殘留應力之研究”, 成功大學機械工程研究所碩士論文, 1998.
[56] 戴子堯, “利用放電加工鑽孔法量測硬度層表面殘留應力”, 成功大學機械工程研究所碩士論文, 1999.
[57] 許富銓, “放電加工鑽孔法量測殘留應力之校正研究”, 成功大學機械工程研究所碩士論文, 2000.
[58] 許多, “SKD11工具鋼殘留應力之放電工加工鑽孔量測法研究”, 國立成功大學機械工程研究所碩士論文, 2001.
[59] 于劍平, “放電加工表面特性之研究”, 國立成功大學機械工程研究所博士論文, 2002.
[60] 陳柏瑋, “尺寸效應對放電加工表面粗糙度及表面裂縫的影響”, 國立成功大學機械工程研究所碩士論文, 2003.
[61] 陳玉華, “放電加工之表面裂紋敏感性研究”, 國立成功大學機械工程研究所碩士論文, 2003.
[62] 許志民, “材料物理特性對放電加工鑽孔法引進殘留應力之影響”, 國立成功大學機械工程研究所碩士論文, 2006.
[63] 謝銘倫, “微細放電加工之加工參數影響研究”, 國立成功大學機械工程研究所碩士論文, 2008.
[64] 劉全, “EDM應變規鑽孔法測量殘留應力之最佳化流程設計”, 國立成功大學機械工程研究所博士論文, 2008.
[65] R. Bormann, “Getting those better EDM'd Surface”, Modern Machine Shop, vol. 63, No. 9, 1991, pp. 56-66.
[66] 董光雄, “放電加工”, 復文書局, 1988.
[67] J. A. McGeough, and H. Rasmussen, “A macroscopic model of electro-discharge machining”, International Journal of Machine Tools and Manufacture, vol. 22, 1982, pp. 333-339.
[68] 黃錦鐘編譯, “最新放電加工技術”, 全華科技圖書股份有限公司, 1987.
[69] 林楠盛, “放電加工之應用技術”, 機械工業雜誌, vol. 82, 1990, pp. 203-215.
[70] D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, and K.Popov, “Micro-EDM recent developments and research issues”, Journal of Materials Processing Technology, vol. 149, 2004, pp. 50-57.
[71] 許坤明, “放電加工機用電氣迴路之探討”, 機械技術, vol. 38, 1988, pp. 100-105.
[72] 葉思武譯, “微細放電加工的現狀”, 機械雜誌月刊, 2000, pp. 112-118.
[73] Z. L. Wang, W. S. Zhao, S. C. Di, and G. X. Chi, “Advancements of micro-EDM”, China Mechanical Engineering, vol. 13, No. 10, 2002, pp. 894-898.
[74] F. Roethel, “Surface properties in electric discharge machining”, NASA Technical Translation (NASA TT), vol. 20243, 1988.
[75] Y. Youshen, Y. Mukoyama, H. Kato, and T. Hanaoka, “Analysis of crack generative region in crater machined by impulse electrical discharge”, Journal of the Japan Society of Precision Engineering, vol. 60, No. 3, 1994, pp. 388-392.
[76] M. A. E.-R. Merdan, and R. D. Arnell, “The surface integrity of a die steel after electrodischarge machining. I. structure composition and hardness”, Surface Engineering, vol. 5, No. 2, 1989, pp. 158-164.
[77] R. Bormann, “Understanding die-sinking EDM surface integrity”, Carbide and Tool Journal, vol. 20, No. 6, 1988, pp. 12-16.
[78] 李驊登, “不同放電加工條件下工件表面之缺陷分析”, 中華民國第四屆破壞科學研討會論文集, 1996, pp. 411-416.
[79] 陳中城, “CNC搖動放電加工表層特性之研究”, 高雄工商專學報, vol. 23, 1993, pp. 351-363.
[80] J. Worbye, “Guidelines for EDM of tool steels”, Precision Metal, 1987, pp. 11-16.
[81] 褚方勳, “放電加工表面的殘留應力與變質層”, 應用機械工學, 1989, pp. 90-95.
[82] 楊景堂, “微細放電加工技術”, 機械工業雜誌, 1997, pp. 193-200.
[83] 李驊登, “鋼鐵材料學”, 國立成功大學機械系, 2008.
[84] “榮剛材料科技(股)公司”, http://www.gmtc.com.tw/pdf/02/c/D2.pdf
[85] “ASM Heat Treater's Guide”, 1986.
[86] F. Han, Y. Yamada, T. Kawakami, and M. Kunieda, “Experimental attempts of sub-micrometer order size machining using micro-EDM”, Precision Engineering, vol. 30, 2006, pp. 123-131.
[87] H. Xia, M. Kunieda, and N. Nishiwaki, “Removal Amount Difference between Anode and Cathode in EDM Process”, IJEM, vol. 1, 1996, pp. 45-52.
[88] Y. Y. Tsai, “Electrode wear in micro-EDM”, Dissertation,The University of Tokyo, 2001.
[89] B. H. Yan, F. Y. Huang, H. M. Chow, and J. Y. Tsai, “Micro-hole machining of carbide by electric discharge machining”, Journal of Materials Processing Technology, vol. 87, 1999, pp. 139-145.
[90] B. Bozkurt, M. R. Patel, M. A. Barrufet, and P. T. Eubank, “Theoretical models of electrical discharge machining process (III) The variable mass cylindrical plasma model erosion model”, Journal of Applied Physics, vol. 73,No. 1, 1993, pp. 7900-7909.
[91] N. Mohri, N. Saito, and Y. Tsunekawa, “Metal surface modification by electrical discharge machining with composite electrode”, Annals of the CIRP, vol. 42, 1993, pp. 219-222.
[92] A. G. Mamalis, G. C. Voaniakos, and N. M. Vaxevanidis, “Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces:An experimental investigation”, Journal of Mechanical Working Technology, vol. 15, 1987, pp. 335-356.
[93] P. C. Pandey, and S. T. Jilani, “Plasma channel growth and the resolidified layer in EDM”, Precision Engineering, vol. 8, No. 2, 1986, pp. 104-110.
[94] L. C. Lee, L. C. Lim, Y. S. Wong, and H. S. Fong, “Crack susceptibility of electro- discharge machined surfaces”, Journal of Materials Processing Technology, vol. 29, 1992, pp. 213-221.
[95] L. C. Lee, L. C. Lim, and Y. S. Wong, “Towards crack minimisation of EDMed surfaces”, Journal of Materials Processing Technology, vol. 32, 1992, pp. 45-54.
[96] L. C. Lee, L. C. Lim, Y. S. Wong, and H. H. Lu, “Towards a better understanding of the surface features of electro-discharge machined tool steels”, Journal of Materials Processing Technology, vol. 24, 1990, pp. 513-523.
[97] M. T. Flaman, and J. A. Herring, “Comparison of four hole-producing techniques for the center-hole residual-stress measurement method”, Experimental Technique, 1985, pp. 30-32.