簡易檢索 / 詳目顯示

研究生: 朱柏翰
Chu, Po-Han
論文名稱: 微細放電加工之加工參數對表層特性之影響
The Effect of Working Parameters on Surface Integrity by Micro-EDM Process
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 124
中文關鍵詞: 衝擊因子微細放電加工表面裂紋表層特性
外文關鍵詞: Duty Factor, Surface Cracks, Micro-EDM, Surface Integrity
相關次數: 點閱:118下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的主要探討微細放電加工參數對加工表層特性之影響。利用放電研磨法(EDG)及線放電加工法(WEDG)將碳化鎢電極加工至電極尺寸150μm,針對試件SKD11進行1mm深度的微孔加工。加工完成後,分別量測與觀察擴孔量、電極消耗、實際加工深度、電極消耗長度與試件加工深度之消耗比、白層厚度以及表面裂紋與形貌,所得結果再與加工參數進行討論。
    本研究主要分為兩個部分,首先選取放電電流與放電持續時間為放電製程參數,進行全因素實驗以探究兩種放電加工參數與放電加工後表層特性之關係。第二部分則利用第一階段的全因素實驗求得之適用放電加工參數,探討Duty Factor對放電表層特性的影響。
    研究結果顯示,若放電電流選用0.1A-0.3A且放電持續時間採用15μs以下,除了加工時間可控制在15分鐘以內,擴孔形貌可保持完整,實際加工深度穩定且加工效率較佳之外,白層厚度可維持在2.5μm~4μm範圍內且單一參數的白層表面起伏程度降低,表面裂紋數量少且裂紋形態單一,其幾乎為穿孔裂紋。
    在Duty Factor方面,隨著衝擊因子提高,不論擴孔量、實際加工深度、白層平均厚度以及表面裂紋數量等都有微幅的提升,且孔底形貌逐漸形成尖錐狀。此外,當放電持續時間設定在2μs及6μs時,Duty Factor增加可降低加工時間進而提升加工速率,但是當放電持續時間縮短至0.5μs時,Duty Factor增加反而延長加工時間,導致加工效率降低。

    This study evaluates the effects of working parameters on surface integrity of micro-holes drilled by the Micro-EDM process. Micro electrodes with 150μm in diameter were manufactured by EDG and WEDG, and used to drill blind holes with depth of 1 mm on tool steel SKD11. Effects of hole enlargement, electrode wear, hole machining depth, wear ratio, thickness of white layer, and surface crack were analyzed.
    There are two main concerns in this study. First , pulse current and pulse-on duration were selected as the working parameters for full factorial experiment to get the relationship between these two parameters and surface integrity. Second, using these parameters acquired from part one to study the effects of Duty Factor on surface integrity.
    Experimental results revealed that the optimum surface integrity was obtained when pulse current was selected in the range from 0.1 A to 0.3A and pulse-on duration was below 15μs, where the white layer thickness maintained at 2.5μm-4.0μm , minimum surface roughness , less surface crack and most of them were pore cracks.
    Moreover, hole enlargement, hole machining depth, and mean thickness of white layer were all increased with increasing the Duty Factor, and blind holes tend to be cone-shaped. When pulse-on duration was 2μs or 6μs, increasing the Duty Factor can also increase the material removal rate. However, when the pulse-on duration was down to 0.5μs, increasing the Duty Factor will increase the working time so as to lower the material removal rate.

    -總目錄- 論文審查及口試合格證明………………………………………….Ⅰ 中文摘要...............................................Ⅱ 英文摘要…………………………………………………………….Ⅲ 誌謝...................................................Ⅳ 總目錄.................................................Ⅴ 表目錄………………………………………………………………Ⅷ 圖目錄………………………………………………………………Ⅸ 第一章 前言…………………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………3 1.2.1 放電加工模型…………………………………………3 1.2.2 電氣迴路相關研究……………………………………4 1.2.3 微細電極製作…………………………………………5 1.2.4 放電加工參數對於表層特性的影響…………………6 1.2.5 PMD-EDM製程…………………………………………10 1.2.6 實驗室歷年研究………………………………………11 1.3 研究動機與目的……………………………………………15 第二章 理論說明……………………………………………………16 2.1 放電加工原理....................................16 2.2 放電加工機電氣迴路..............................20 2.3 表層特性……………………………………………………23 2.3.1 表面形貌………………………………………………23 2.3.2 放電加工表層組織變化………………………………28 2.3.3 變質層硬度變化………………………………………30 2.3.4 變質層表面殘留應力變化……………………………31 2.4 微細放電加工特點…………………………………………32 第三章 實驗內容……………………………………………………34 3.1 實驗流程……………………………………………………34 3.2 實驗材料……………………………………………………37 3.3 實驗規劃……………………………………………………40 3.4 微細電極製作………………………………………………41 3.5 試件製備與夾持……………………………………………45 3.6 觀察項目……………………………………………………46 3.7 實驗儀器與設備……………………………………………50 第四章 實驗結果與討論……………………………………………52 4.1 放電加工參數與表面特性之全因素實驗…………………52 4.1.1 放電加工參數對擴孔量之影響分析…………………52 4.1.2 放電加工參數對電極消耗率之影響分析……………63 4.1.3 放電加工參數對加工速率的影響……………………65 4.1.4 放電加工參數對消耗比之影響分析…………………70 4.1.5 放電加工參數對平均白層厚度之影響分析…………72 4.1.6 放電加工參數對表面裂紋與形貌之影響分析………82 4.1.7 討論……………………………………………………94 4.2 Duty Factor與表面特性之實驗………………………………95 4.2.1 Duty Factor的效應…………………………………………95 4.2.2 Duty Factor對擴孔量之影響分析…………………………96 4.2.3 Duty Factor對電極消耗率與加工速率之影響分析………99 4.2.4 Duty Factor對消耗比之影響分析…………………………103 4.2.5 Duty Factor對盲孔孔底形貌之影響分析…………………104 4.2.6 Duty Factor對平均白層厚度的影響………………………106 4.2.7 Duty Factor對表面裂紋與形貌的影響……………………109 4.2.8討論……………………………………………………………112 第五章 結論與建議…………………………………………………113 5.1 結論…………………………………………………………113 5.2 未來研究方向與建議………………………………………115 第六章 參考文獻……………………………………………………117 簡歷…………………………………………………………………124 -表目錄- 表3.1 SKD11合金成分表……………………………………………37 表3.2 碳化鎢電極材料特性表………………………………………39 -圖目錄- 圖2.1放電加工過程示意圖…………………………………………19 圖2.2電容器放電電路………………………………………………21 圖2.3電容器電路之電壓與電流波形圖……………………………21 圖2.4電晶體放電電路………………………………………………22 圖2.5電晶體電路之電壓與電流波形圖……………………………22 圖2.6電晶體控制的電容器放電電路圖……………………………22 圖2.7電晶體控制的電容器放電電路之電壓與電流波形圖………22 圖2.8熔融組織與堆疊組織…………………………………………24 圖2.9淺坑與凸脊……………………………………………………24 圖2.10球狀附著物…………………………………………………25 圖2.11氣孔…………………………………………………………25 圖2.12窩孔…………………………………………………………25 圖2.13積碳…………………………………………………………26 圖2.14裂紋…………………………………………………………27 圖2.15剖面變質層組織……………………………………………29 圖2.16 S45C變質層硬度自表層隨深度而變化的情形…………30 圖2.17 SKD11放電加工後引入應力分佈…………………………31 圖3.1第一階段實驗流程圖…………………………………………35 圖3.2第二階段實驗流程圖…………………………………………36 圖3.3 SKD11淬火-回火熱處理曲線圖……………………………38 圖3.4 碳化鎢電極…………………………………………………39 圖3.5碳化鎢電極金相SEM圖………………………………………39 圖3.6放電研磨法(EDG)裝置圖……………………………………42 圖3.7線放電加工法(WEDM)加工示意圖……………………………42 圖3.8線放電研磨法(WEDG)加工示意圖……………………………43 圖3.9修整電極之流程示意圖………………………………………44 圖3.10 電極量測示意圖……………………………………………44 圖3.11 試件夾具裝置圖……………………………………………45 圖3.12鑽孔位置示意圖……………………………………………45 圖3.13 微細放電加工機……………………………………………50 圖3.14 掃描式電子顯微鏡(SEM)…………………………………51 圖3.15 TAMAYA面積儀………………………………………………51 圖4.1不同放電持續時間與放電電流對擴孔量之關係曲線圖……53 圖4.2不同放電電流與放電持續時間對擴孔量之關係曲線圖……55 圖4.3熔融放電環……………………………………………………55 圖4.4熔融放電環……………………………………………………55 圖4.5 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/0.1A)......................................57 圖4.6 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/0.2A)......................................58 圖4.7 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/0.3A)......................................59 圖4.8 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/0.4A)......................................60 圖4.9 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/0.5A)......................................61 圖4.10 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/1A)........................................62 圖4.11 不同放電持續時間與放電休止時間之孔洞形貌(Vp/Ip=120V/2A)........................................62 圖4.12 不同放電電流與放電持續時間對電極消耗率之關係曲線圖.....................................................63 圖4.13 不同放電持續時間與放電電流對電極消耗率之關係曲線圖.....................................................64 圖4.14 不同放電電流與放電持續時間對加工速率之關係曲線圖.....................................................65 圖4.15 不同放電電流與放電持續時間對加工時間之關係曲線圖.....................................................66 圖4.16 不同放電電流與放電持續時間對加工深度之關係曲線圖.....................................................67 圖4.17 不同放電持續時間與放電電流對加工速率之關係曲線圖.....................................................67 圖4.18 不同放電持續時間下之表面形貌SEM圖(0.1A)…………69 圖4.19 不同放電持續時間下之表面形貌SEM圖(0.3A)…………69 圖4.20 不同放電持續時間下之表面形貌SEM圖(0.5A)…………69 圖4.21 不同放電持續時間與放電電流對兩極消耗比之關係曲線圖....................................................70 圖4.22 不同放電電流與放電持續時間對兩極消耗比之關係曲線圖....................................................71 圖4.23 不同放電電流與放電持續時間對白層平均厚度之關係曲線圖....................................................73 圖4.24 不同放電持續時間與放電電流對平均白層厚度之關係曲線圖....................................................74 圖4.25不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/0.1A).....................................76 圖4.26不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/0.2A).....................................77 圖4.27不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/0.3A).....................................78 圖4.28不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/0.4A).....................................79 圖4.29不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/0.5A).....................................80 圖4.30不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/1A).......................................81 圖4.31不同放電持續時間與放電休止時間之白層形貌(Vp/Ip=120V/2A).......................................81 圖4.32穿孔裂紋……………………………………………………83 圖4.33穿孔裂紋……………………………………………………83 圖4.34交界裂紋……………………………………………………83 圖4.35交界裂紋……………………………………………………83 圖4.36網狀裂紋……………………………………………………84 圖4.37網狀裂紋……………………………………………………84 圖4.38輻射狀裂紋…………………………………………………84 圖4.39輻射狀裂紋…………………………………………………84 圖4.40不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/0.1A).....................................88 圖4.41不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/0.2A).....................................89 圖4.42不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/0.3A).....................................90 圖4.43不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/0.4A).....................................91 圖4.44不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/0.5A).....................................92 圖4.45不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/1A).......................................93 圖4.46不同放電持續時間與放電休止時間之表面形貌(Vp/Ip=120V/2A).......................................93 圖4.47 不同放電持續時間與Duty Factor之擴孔量關係曲線圖....................................................96 圖4.48不同Duty Factor之擴孔形貌SEM圖 (Vp/Ip/τon=120V/0.3A/0.5s)...........................97 圖4.49不同Duty Factor之擴孔形貌SEM圖 (Vp/Ip/τon=120V/0.3A/2s).............................97 圖4.50不同Duty Factor之擴孔形貌SEM圖 (Vp/Ip/τon=120V/0.3A/6μs)…….......................98 圖4.51 不同放電持續時間與Duty Factor對加工深度之關係曲線圖....................................................99 圖4.52 不同放電持續時間與Duty Factor對電極消耗長度曲線圖...................................................100 圖4.53 不同放電持續時間與Duty Factor對加工時間之關係曲線圖...................................................101 圖4.54 不同放電持續時間與Duty Factor對電極消耗率之曲線圖...................................................102 圖4.55 不同放電持續時間與Duty Factor對加工速率之關係曲線圖...................................................102 圖4.56 不同放電持續時間與Duty Factor對消耗比之關係曲線圖...................................................103 圖4.57 不同Duty Factor之盲孔孔底形貌SEM圖 (τon=0.5μs)........................................104 圖4.58 不同Duty Factor之盲孔孔底形貌SEM圖 (τon=2μs)..........................................105 圖4.59 不同Duty Factor之盲孔孔底形貌SEM圖 (τon=6μs)..........................................105 圖4.60 不同放電持續時間與Duty Factor對白層厚度之關係曲線圖...................................................106 圖4.61 不同Duty Factor對白層形貌之SEM圖 (τon=0.5μs)........................................107 圖4.62 不同Duty Factor對白層形貌之SEM圖 (τon=2μs)..........................................107 圖4.63 不同Duty Factor對白層形貌之SEM圖 (τon=6μs)..........................................108 圖4.64 不同Duty Factor對表面形貌之SEM圖 (τon=0.5μs)........................................110 圖4.65 不同Duty Factor對表面形貌之SEM圖 (τon=2μs)..........................................110 圖4.66 不同Duty Factor對表面形貌之SEM圖 (τon=6μs)..........................................111

    -參考文獻-

    [1] 井上潔著, 黃錦鐘譯, “放電加工”, 高立圖書有限公司, 1998.
    [2] D. Y. Sheu, and T. Masuzawa, “Development of large-scale production of microholes by EDM”, Proceedings of the 13th International Symposium for Electromaching ( ISEM XIII), vol. 1, 2001, pp. 747-757.
    [3] M. S. Cheong, D. W. Cho, and K. F. Ehmann, “Identification and control for micro- drilling productivity enhancement”, International Journal of Machine Tools and Manufacture vol. 39, 1999, pp. 1539-1561.
    [4] L. C. Lim, L. C. Lee, Y. S. Wong, and H. H. Lu, “Solidification microstructure of electrodischarge machined surfaces of tool steels”, Materials Science and Technology, vol. 7, No.3, 1991, pp. 239-248.
    [5] B. Bozkurt, A. M. Gadalla, and P. T. Eubank, “Simulation of erosion in a single discharge EDM process”, Materials and Manufacturing Processes, vol. 11, No.4, 1996, pp. 555-563.
    [6] C. P. Tabrett, “The electro-discharge machining surfaces of high-chromium white irons”, Journal of Materials Science Letters, vol. 15, 1996, pp. 1792-1794.
    [7] N. Taniguchi, “Current status in, and future trends of, ultraprecision machining and ultrafine materials processing”, Annals of the CIRP, vol. 32, No. 2, 1983, pp. 573-582.
    [8] R. Snoeys, F. Staelens, and W. Dekeyser, “Current trends in non-conventional materials removal processes”, Annals of the CIRP, vol. 35, No. 2, 1986, pp. 467-480.
    [9] T. Masuzawa, “Micro-EDM”, Proceedings of the 13th International Symposium for Electromaching ( ISEM XIII), vol. 1, 2001, pp. 3-19.
    [10] 戴子堯, “放電加工之電極尺寸與加工參數對工具鋼表層特性之研究”, 國立成功大學機械工程研究所博士論文, 2004.
    [11] D. M. Allen, and A. Lecheheb, “Micro electro-discharge machining of ink iet nozzles:optimum selection of material and machining parameters”, Journal of Materials Processing Technology, vol. 58, 1996, pp. 53-66.
    [12] T. Masaki, K. Kawata, and T. Masuzawa, “Micro electro-discharge machining and its applications”, Micro Electro Mechanical Systems (IEEE), 1990, pp. 21-26.
    [13] R. Bormann, “Understanding die-sinking EDM surface integrity”, Carbide and Tool Journal, 1991, pp. 12-16.
    [14] 張渭川譯, “放電加工的結構與實用技術”, 全華科技圖書股份有限公司, 1993.
    [15] 仁雄, “放電加工技術之現狀與將來”, 機械技術, vol. 161, 1998, pp. 220-226.
    [16] N. F. Petrofes, and A. M. Gadalla, “Processing aspects of shaping advanced materials by electrical discharge machining”, Materials and Manufacturing Processes, vol. 13, No.1, 1988, pp. 127-157.
    [17] D. D. Dibitonto, P. T. Eubank, M. R. Patel, and M. A. Barrufet, “Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model”, Journal of Applied Physics, vol. 66, No.9, 1989, pp. 4095-4103.
    [18] M. R. Patel, M. A. Barrufet, P. T. Eubank, and D. D. Dibitonto, “Theoretical models of the electrical discharge machining process II. The anode erosion model”, Journal of Applied Physics, vol. 66, No.9, 1989, pp. 4104-4111.
    [19] A. Erden, F. Arinc, and M. kogmen, “Comparison of mathematical models for electric discharge machining”, Journal of Materials Processing & Manufacturing Science, vol. 4, 1995, pp. 163-175.
    [20] Y. H. Jeong, and B. K. Min, “Geometry prediction of EDM-drilled holes and tool electrode shapes of micro-EDM process using simulation”, International Journal of Machine Tools and Manufacture, vol. 47, 2007, pp. 1817-1826.
    [21] S. H. Yeo, W. Kurnia, and P. C. Tan, “Electro-thermal modelling of anode and cathode in micro-EDM”, Journal of Applied Physics, vol. 40, 2007, pp. 2513-2521.
    [22] M. A. E.-R. Merdan, and R. D. Arnell, “The Surface Integrity of a Die Steel After Electrodischarge Machining. II. Residual Stress Distribution”, Surface Engineering, vol. 7, No. 2, 1991, pp. 154-158.
    [23] M. P. Jahan, Y. S. Wong, and M. Rahman, “A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator”, journal of Materials Processing Technology, 2008.
    [24] T. Masuzawa, M. Fujino, K. Kobayashi, and T. Suzuki, “Study on micro-hole drilling by EDM - automatic electrode forming with traveling wire”, Bulletin of Japan Society of Precision Engineering, vol. 20, No. 2, 1986, pp. 117-120.
    [25] T. Kawakami, and M. Kunieda, “Study on factors determining limits of minimum machinable size in micro EDM”.
    [26] M. Yamazaki, T. Suzuki, N. Mori, and M. Kunieda, “EDM of micro-rods by self-drilled holes”, Journal of Materials Processing Technology, vol. 149, 2004, pp. 134-138.
    [27] 莊殷, 許富銓, 謝明倫與李驊登, “微細電極製作方法與微放電铣削技術之研究”, 中國機械工程學會第二十五屆全國學術研討會論文集, 2008.
    [28] J. P. Kruth, and K. U. Leuven, “Study of white layer of a surface machined by die-sinking electro-discharge machining”, Annals of the CIRP, vol. 44, 1995.
    [29] P. M. Lonardo, and A. A. Bruzzone, “Effect of flushing and electrode material on die sinking EDM”, Annals of the CIRP, vol. 48, 1999.
    [30] F. Ghanem, C. Braham, and H. Sidhom, “Influence of steel type on electrical discharge machined surface integrity”, Journal of Materials Processing Technology, vol. 142, 2003, pp. 163-173.
    [31] H. T. Lee, and T. Y. Tai, “Relationship between EDM parameters and surface crack formation”, Journal of Materials Processing Technology, vol. 142, 2003, pp. 676-683.
    [32] R. A. Mahdavinejad, and A. Mahdavinejad, “ED machining of WC-Co”, Journal of Materials Processing Technology, vol. 162-163, 2005, pp. 637-643.
    [33] B. Ekmekci, O. Elkoca, and A. Erden, “A Comparative Study on the Surface Integrity of plastic mold steel due to electric discharge machining”, Metallurgical and Materials Transactions B, vol. 36B, 2005, pp. 117-124.
    [34] Y. H. Guu, “AFM surface imaging of AISI D2 tool steel machined by the EDM process”, Applied Surface Science, vol. 242, 2005, pp. 245-250.
    [35] M. Y. Ali, M. R. Rosfazila, and E. Rosnita, “Geometrical integrity of microholes drilled by conventional and micro electrical discharge machining”, pp. 731-739.
    [36] Z. Y. Yu, K. P. Rajurkar, and H. Shen, “High aspect ratio and complex shaped blind micro holes by micro EDM”.
    [37] L. Li, C. Diver, J. Atkinson, R. G. Wagner, and H. J. Helml, “ Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture”, Annals of the CIRP, vol. 55, 2006.
    [38] K. Kanlayasiri, and S. Boonmung, “An investigation on effects of wire-EDM machining parameters on surface roughness of newly developed DC53 die steel”, Journal of Materials Processing Technology, vol. 187-188, 2007, pp. 26-29.
    [39] B. Ekmekci, “Residual stresses and white layer in electric discharge machining (EDM) ”, Applied Surface Science, vol. 253, 2007, pp. 9234-9240.
    [40] B. Bhattacharyya, S. Gangopadhyay, and B. R. Sarkar, “Modelling and analysis of EDMed job surface integrity”, Journal of Materials Processing Technology, vol. 189, 2007, pp. 169-177.
    [41] Y. Ito, R. Tanabe, and N. Mohri, “Self-sharpening of thin tungsten electrode in single, high-current discharge its dynamics and mechanism”, Annals of the CIRP, vol. 56, 2007, pp. 229-232.
    [42] J. Marafona, “Black layer characterisation and electrode wear ratio in electrical discharge machining (EDM)”, Journal of Materials Processing Technology, vol. 184, 2007, pp. 27-31.
    [43] M. Kiyak, and O. Cakir, “Examination of machining parameters on surface roughness in EDM of tool steel”, Journal of Materials Processing Technology, vol. 191, 2007, pp. 141-144.
    [44] M. P. Jahan, Y. S. Wong, and M. Rahman, “A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials”, Journal of Materials Processing Technology, 2008.
    [45] J. D. Marafona, and A. Araujo, “Influence of workpiece hardness on EDM performance”, International Journal of Machine Tools and Manufacture, vol. 49, 2009, pp. 744-748.
    [46] T. Y. Tai, and S. J. Lu, “Improving the fatigue life of electro-discharge-machined SKD11 tool steel via the suppression of surface cracks”, International Journal of Fatigue, vol. 31, 2009, pp. 433-438.
    [47] Y. S. Wong, L. C. Lim, L. Rahuman, and W. M. Tee, “Near-mirror-finish phenomenon in EDM using powder-mixed dielectric”, Journal of Materials Processing Technology, vol. 79, 1998, pp. 30-40.
    [48] P. Pecas, and E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining”, International Journal of Machine Tools and Manufacture vol. 43, 2003, pp. 1465-1471.
    [49] K. L. Wu, B. H. Yan, F. Y. Huang, and S. C. Chen, “ Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric”, International Journal of Machine Tools and Manufacture, vol. 45, 2005, pp. 1195-1201.
    [50] P. Pecas, and E. Henriques, “Electrical discharge machining using simple and powder-mixed dielectric:The effect of the electrode area in the surface roughness and topography”, Journal of Materials Processing Technology, vol. 200, 2008, pp. 250-258.
    [51] 邴兆齊, “放電加工鑽孔法量測殘留應力之可行性分析”, 成功大學機械工程研究所碩士論文, 1994.
    [52] 葉麗雅, “放電加工鑽孔法量測殘留應力之應用研究”, 成功大學機械工程研究所碩士論文, 1995.
    [53] 楊永名, “放電加工參數與加工表面特性對量測殘留應力之影響評估”, 成功大學機械工程研究所碩士論文, 1996.
    [54] 童文煥, “放電加工鑽孔白層與引進殘留應力之關連性研究”, 成功大學機械工程研究所碩士論文, 1998.
    [55] 林培欽, “放電加工鑽孔引進殘留應力之研究”, 成功大學機械工程研究所碩士論文, 1998.
    [56] 戴子堯, “利用放電加工鑽孔法量測硬度層表面殘留應力”, 成功大學機械工程研究所碩士論文, 1999.
    [57] 許富銓, “放電加工鑽孔法量測殘留應力之校正研究”, 成功大學機械工程研究所碩士論文, 2000.
    [58] 許多, “SKD11工具鋼殘留應力之放電工加工鑽孔量測法研究”, 國立成功大學機械工程研究所碩士論文, 2001.
    [59] 于劍平, “放電加工表面特性之研究”, 國立成功大學機械工程研究所博士論文, 2002.
    [60] 陳柏瑋, “尺寸效應對放電加工表面粗糙度及表面裂縫的影響”, 國立成功大學機械工程研究所碩士論文, 2003.
    [61] 陳玉華, “放電加工之表面裂紋敏感性研究”, 國立成功大學機械工程研究所碩士論文, 2003.
    [62] 許志民, “材料物理特性對放電加工鑽孔法引進殘留應力之影響”, 國立成功大學機械工程研究所碩士論文, 2006.
    [63] 謝銘倫, “微細放電加工之加工參數影響研究”, 國立成功大學機械工程研究所碩士論文, 2008.
    [64] 劉全, “EDM應變規鑽孔法測量殘留應力之最佳化流程設計”, 國立成功大學機械工程研究所博士論文, 2008.
    [65] R. Bormann, “Getting those better EDM'd Surface”, Modern Machine Shop, vol. 63, No. 9, 1991, pp. 56-66.
    [66] 董光雄, “放電加工”, 復文書局, 1988.
    [67] J. A. McGeough, and H. Rasmussen, “A macroscopic model of electro-discharge machining”, International Journal of Machine Tools and Manufacture, vol. 22, 1982, pp. 333-339.
    [68] 黃錦鐘編譯, “最新放電加工技術”, 全華科技圖書股份有限公司, 1987.
    [69] 林楠盛, “放電加工之應用技術”, 機械工業雜誌, vol. 82, 1990, pp. 203-215.
    [70] D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, and K.Popov, “Micro-EDM recent developments and research issues”, Journal of Materials Processing Technology, vol. 149, 2004, pp. 50-57.
    [71] 許坤明, “放電加工機用電氣迴路之探討”, 機械技術, vol. 38, 1988, pp. 100-105.
    [72] 葉思武譯, “微細放電加工的現狀”, 機械雜誌月刊, 2000, pp. 112-118.
    [73] Z. L. Wang, W. S. Zhao, S. C. Di, and G. X. Chi, “Advancements of micro-EDM”, China Mechanical Engineering, vol. 13, No. 10, 2002, pp. 894-898.
    [74] F. Roethel, “Surface properties in electric discharge machining”, NASA Technical Translation (NASA TT), vol. 20243, 1988.
    [75] Y. Youshen, Y. Mukoyama, H. Kato, and T. Hanaoka, “Analysis of crack generative region in crater machined by impulse electrical discharge”, Journal of the Japan Society of Precision Engineering, vol. 60, No. 3, 1994, pp. 388-392.
    [76] M. A. E.-R. Merdan, and R. D. Arnell, “The surface integrity of a die steel after electrodischarge machining. I. structure composition and hardness”, Surface Engineering, vol. 5, No. 2, 1989, pp. 158-164.
    [77] R. Bormann, “Understanding die-sinking EDM surface integrity”, Carbide and Tool Journal, vol. 20, No. 6, 1988, pp. 12-16.
    [78] 李驊登, “不同放電加工條件下工件表面之缺陷分析”, 中華民國第四屆破壞科學研討會論文集, 1996, pp. 411-416.
    [79] 陳中城, “CNC搖動放電加工表層特性之研究”, 高雄工商專學報, vol. 23, 1993, pp. 351-363.
    [80] J. Worbye, “Guidelines for EDM of tool steels”, Precision Metal, 1987, pp. 11-16.
    [81] 褚方勳, “放電加工表面的殘留應力與變質層”, 應用機械工學, 1989, pp. 90-95.
    [82] 楊景堂, “微細放電加工技術”, 機械工業雜誌, 1997, pp. 193-200.
    [83] 李驊登, “鋼鐵材料學”, 國立成功大學機械系, 2008.
    [84] “榮剛材料科技(股)公司”, http://www.gmtc.com.tw/pdf/02/c/D2.pdf
    [85] “ASM Heat Treater's Guide”, 1986.
    [86] F. Han, Y. Yamada, T. Kawakami, and M. Kunieda, “Experimental attempts of sub-micrometer order size machining using micro-EDM”, Precision Engineering, vol. 30, 2006, pp. 123-131.
    [87] H. Xia, M. Kunieda, and N. Nishiwaki, “Removal Amount Difference between Anode and Cathode in EDM Process”, IJEM, vol. 1, 1996, pp. 45-52.
    [88] Y. Y. Tsai, “Electrode wear in micro-EDM”, Dissertation,The University of Tokyo, 2001.
    [89] B. H. Yan, F. Y. Huang, H. M. Chow, and J. Y. Tsai, “Micro-hole machining of carbide by electric discharge machining”, Journal of Materials Processing Technology, vol. 87, 1999, pp. 139-145.
    [90] B. Bozkurt, M. R. Patel, M. A. Barrufet, and P. T. Eubank, “Theoretical models of electrical discharge machining process (III) The variable mass cylindrical plasma model erosion model”, Journal of Applied Physics, vol. 73,No. 1, 1993, pp. 7900-7909.
    [91] N. Mohri, N. Saito, and Y. Tsunekawa, “Metal surface modification by electrical discharge machining with composite electrode”, Annals of the CIRP, vol. 42, 1993, pp. 219-222.
    [92] A. G. Mamalis, G. C. Voaniakos, and N. M. Vaxevanidis, “Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces:An experimental investigation”, Journal of Mechanical Working Technology, vol. 15, 1987, pp. 335-356.
    [93] P. C. Pandey, and S. T. Jilani, “Plasma channel growth and the resolidified layer in EDM”, Precision Engineering, vol. 8, No. 2, 1986, pp. 104-110.
    [94] L. C. Lee, L. C. Lim, Y. S. Wong, and H. S. Fong, “Crack susceptibility of electro- discharge machined surfaces”, Journal of Materials Processing Technology, vol. 29, 1992, pp. 213-221.
    [95] L. C. Lee, L. C. Lim, and Y. S. Wong, “Towards crack minimisation of EDMed surfaces”, Journal of Materials Processing Technology, vol. 32, 1992, pp. 45-54.
    [96] L. C. Lee, L. C. Lim, Y. S. Wong, and H. H. Lu, “Towards a better understanding of the surface features of electro-discharge machined tool steels”, Journal of Materials Processing Technology, vol. 24, 1990, pp. 513-523.
    [97] M. T. Flaman, and J. A. Herring, “Comparison of four hole-producing techniques for the center-hole residual-stress measurement method”, Experimental Technique, 1985, pp. 30-32.

    下載圖示
    2012-08-28公開
    QR CODE