| 研究生: |
徐珮筑 Hsu, Pei-Ju |
|---|---|
| 論文名稱: |
二氧化矽擔載磷化鎳行4-甲基愈創木酚加氫脫氧反應:磷化鎳之粒徑效應 Hydrodeoxygenation of 4-methylguaiacol over silica-supported nickel phosphide catalyst: The particle size effect |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 磷化鎳 、加氫脫氧 、粒徑效應 、4-甲基愈創木酚 |
| 外文關鍵詞: | Nickel phosphide, hydrodeoxygenation, particle size effect, 4-methylguaiacol |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討磷化鎳之粒徑效應於4-甲基愈創木酚的加氫脫氧反應。利用低比表面積二氧化矽(SiO2-L)、高比表面積二氧化矽(SiO2-H)及中孔結構之二氧化矽(SBA-15)作為觸媒載體合成具有不同粒徑之磷化鎳。觸媒的物化性鑑定包括:氮氣物理吸附(BET)、X-ray繞射圖譜(XRD)、X射線光電子能譜(XPS)、感應耦合電漿原子發射光譜分析(ICP-AES)、穿透式電子顯微鏡(TEM)、氫氣程溫還原反應(H2-TPR)、氫氣程溫脫附反應(H2-TPD) 、一氧化碳的化學吸附(CO chemisorption)、一氧化碳程溫脫附(CO-TPD)以及氨氣的程溫脫附反應 (NH3-TPD)。
本實驗以程溫還原法合成三種二氧化矽擔載磷化鎳觸媒,載體比表面積較高者擁有較小粒徑之磷化鎳。此粒徑差異影響磷化鎳之加氫脫氧活性:較小粒徑之磷化鎳擁有較高氫氣吸附量及較高的鎳離子價態(Niδ+);較大的磷化鎳活性點則具有相反的趨勢。利用批次式反應器於250℃及40 bar氫氣壓力下進行4-甲基愈創木酚加氫脫氧,發現觸媒物化性質的差異也反應在活性測試上;Ni2P/SiO2-L擁有最大轉化率但加氫活性與脫氧程度較弱,相對而言,Ni2P/SBA-15雖轉化率略低於其他兩種觸媒,但具有最佳加氫活性及脫氧程度。推測氫氣吸附量及鎳離子的氧化態對於4-甲基愈創木酚加氫脫氧扮演著重要的關鍵。
The aim of this study is to understand the particle size effect of nickel phosphide in hydrodeoxygenation (HDO) of 4-mathylguaiacol. Different surface areas of silica were used as the supports to synthesize nickel phosphide with varying particle sizes. Commercial SiO2 supports of low surface area (SiO2-L, 96 m2/g), high surface area (SiO2-H, 205 m2/g) and mesoporous SBA-15 (687 m2/g) were selected as the supports. Catalyst characterizations, including N2 physisorption, XRD, XPS, ICP-AES, TEM, H2-TPR, H2-TPD, CO chemisorption, CO-TPD, and NH3-TPD were performed.
Silica-supported nickel phosphide catalysts were prepared by temperature-programmed reduction. High surface area support had small particle size of nickel phosphide, while the low surface area counterpart has large nickel phosphide size. The particle size affects HDO activity of 4-methylguaiacol. The HDO of 4-methylguaiacol at 250℃ and 40 bar H2 in a batch reactor is used as a model reaction to explore the particle size effect of nickel phosphide. The small particle size of nickel phosphide had higher H2 uptake amount and higher partial positive charged Ni cations (Niδ+) than large counterpart. The activity test showed that the small particle size of nickel phosphide had lower conversion but higher hydrogenation and deoxygenation ability than large counterparts. H2 uptake was proposed to play a key role in 4-methylguaiacol hydrodeoxygenation reaction.
[1].Ragauskas, A.J., C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, The Path Forward for Biofuels and Biomaterials. Science. 311(5760): p. 484.(2006).
[2].Huber, G.W., S. Iborra, and A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews. 106(9): p. 4044-4098.(2006).
[3].Lange, J.-P., Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining. 1(1): p. 39-48.(2007).
[4].Lin, Y.-C. and G.W. Huber, The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy & Environmental Science. 2(1): p. 68-80.(2009).
[5].Luque, R., L. Herrero-Davila, J.M. Campelo, J.H. Clark, J.M. Hidalgo, D. Luna, J.M. Marinas, and A.A. Romero, Biofuels: a technological perspective. Energy & Environmental Science. 1(5): p. 542-564.(2008).
[6].Lee, H., H. Kim, M.J. Yu, C.H. Ko, J.-K. Jeon, J. Jae, S.H. Park, S.-C. Jung, and Y.-K. Park, Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst. 6: p. 28765.(2016).
[7].Mortensen, P.M., J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, and A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General. 407(1–2): p. 1-19.(2011).
[8].Brown, T.R., Y. Zhang, G. Hu, and R.C. Brown, Techno-economic analysis of biobased chemicals production via integrated catalytic processing. Biofuels, Bioproducts and Biorefining. 6(1): p. 73-87.(2012).
[9].Li, C., X. Zhao, A. Wang, G.W. Huber, and T. Zhang, Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews. 115(21): p. 11559-11624.(2015).
[10].Science direct. 2016; Available from: http://www.sciencedirect.com/.(2016).
[11].Saidi, M., F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B.C. Gates, and M.R. Rahimpour, Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science. 7(1): p. 103-129.(2014).
[12].Zakzeski, J., P.C.A. Bruijnincx, A.L. Jongerius, and B.M. Weckhuysen, The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews. 110(6): p. 3552-3599.(2010).
[13].Oyama, S.T. and Y.-K. Lee, The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. Journal of Catalysis. 258(2): p. 393-400.(2008).
[14].Yang, Y., J. Chen, and H. Shi, Deoxygenation of Methyl Laurate as a Model Compound to Hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 Catalysts with Different Dispersions. Energy & Fuels. 27(6): p. 3400-3409.(2013).
[15].Wu, S.-K., P.-C. Lai, Y.-C. Lin, H.-P. Wan, H.-T. Lee, and Y.-H. Chang, Atmospheric Hydrodeoxygenation of Guaiacol over Alumina-, Zirconia-, and Silica-Supported Nickel Phosphide Catalysts. ACS Sustainable Chemistry & Engineering. 1(3): p. 349-358.(2013).
[16].Wu, S.-K., P.-C. Lai, and Y.-C. Lin, Atmospheric Hydrodeoxygenation of Guaiacol over Nickel Phosphide Catalysts: Effect of Phosphorus Composition. Catalysis Letters. 144(5): p. 878-889.(2014).
[17].Chen, J., H. Shi, L. Li, and K. Li, Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Applied Catalysis B: Environmental. 144: p. 870-884.(2014).
[18].Cecilia, J.A., A. Infantes-Molina, E. Rodríguez-Castellón, A. Jiménez-López, and S.T. Oyama, Oxygen-removal of dibenzofuran as a model compound in biomass derived bio-oil on nickel phosphide catalysts: Role of phosphorus. Applied Catalysis B: Environmental. 136–137: p. 140-149.(2013).
[19].Zhao, H.Y., D. Li, P. Bui, and S.T. Oyama, Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A: General. 391(1–2): p. 305-310.(2011).
[20].Alonso, D.M., S.G. Wettstein, and J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews. 41(24): p. 8075-8098.(2012).
[21].Mosier, N., C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, and M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96(6): p. 673-686.(2005).
[22].Dhepe, P.L. and A. Fukuoka, Cellulose Conversion under Heterogeneous Catalysis. ChemSusChem. 1(12): p. 969-975.(2008).
[23].Dwivedi, P., J.R.R. Alavalapati, and P. Lal, Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development. 13(3): p. 174-182 %@ 0973-0826.(2009).
[24].Cheng, J., Biomass to Renewable Energy Processes. (2009).
[25].Zhang, Y.H.P., Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of industrial microbiology & biotechnology. v. 35(no. 5): p. pp. 367-375-2008 v.35 no.5.(2008).
[26].Romero, Y., F. Richard, and S. Brunet, Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B: Environmental. 98(3): p. 213-223.(2010).
[27].Yan, N., Y. Yuan, R. Dykeman, Y. Kou, and P.J. Dyson, Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Brønsted Acidic Ionic Liquids. Angewandte Chemie International Edition. 49(32): p. 5549-5553.(2010).
[28].Nie, L. and D.E. Resasco, Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. Journal of Catalysis. 317: p. 22-29.(2014).
[29].de Souza, P.M., L. Nie, L.E.P. Borges, F.B. Noronha, and D.E. Resasco, Role of Oxophilic Supports in the Selective Hydrodeoxygenation of m-Cresol on Pd Catalysts. Catalysis Letters. 144(12): p. 2005-2011.(2014).
[30].Bykova, M.V., D.Y. Ermakov, V.V. Kaichev, O.A. Bulavchenko, A.A. Saraev, M.Y. Lebedev, and V.А. Yakovlev, Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study. Applied Catalysis B: Environmental. 113: p. 296-307.(2012).
[31].Bykova, M.V., O.A. Bulavchenko, D.Y. Ermakov, M.Y. Lebedev, V.A. Yakovlev, and V.N. Parmon, Guaiacol hydrodeoxygenation in the presence of Ni-containing catalysts. Catalysis in Industry. 3(1): p. 15-22.(2011).
[32].Schutyser, W., S. Van den Bosch, J. Dijkmans, S. Turner, M. Meledina, G. Van Tendeloo, D.P. Debecker, and B.F. Sels, Selective Nickel-Catalyzed Conversion of Model and Lignin-Derived Phenolic Compounds to Cyclohexanone-Based Polymer Building Blocks. ChemSusChem. 8(10): p. 1805-1818.(2015).
[33].Zhao, C., J. He, A.A. Lemonidou, X. Li, and J.A. Lercher, Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis. 280(1): p. 8-16.(2011).
[34].Zhao, C. and J.A. Lercher, Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts. ChemCatChem. 4(1): p. 64-68.(2012).
[35].Zhang, W., J. Chen, R. Liu, S. Wang, L. Chen, and K. Li, Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Alkane Fuels over Bifunctional Zeolite-Supported Metal Catalysts. ACS Sustainable Chemistry & Engineering. 2(4): p. 683-691.(2014).
[36].Li, K., R. Wang, and J. Chen, Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts. Energy & Fuels. 25(3): p. 854-863.(2011).
[37].Nie, L., P.M. de Souza, F.B. Noronha, W. An, T. Sooknoi, and D.E. Resasco, Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. Journal of Molecular Catalysis A: Chemical. 388: p. 47-55.(2014).
[38].Oyama, S.T. and Y.-K. Lee, Mechanism of Hydrodenitrogenation on Phosphides and Sulfides. The Journal of Physical Chemistry B. 109(6): p. 2109-2119.(2005).
[39].Zhao, H.Y., D. Li, P. Bui, and S.T. Oyama, Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A: General. 391(1): p. 305-310.(2011).
[40].Choi, M., W. Heo, F. Kleitz, and R. Ryoo, Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications,(12): p. 1340-1341.(2003).
[41].Oyama, S.T., X. Wang, Y.K. Lee, K. Bando, and F.G. Requejo, Effect of Phosphorus Content in Nickel Phosphide Catalysts Studied by XAFS and Other Techniques. Journal of Catalysis. 210(1): p. 207-217.(2002).
[42].Sawhill, S.J., K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, and M.E. Bussell, Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support. Journal of Catalysis. 231(2): p. 300-313.(2005).
[43].Lee, Y.-K. and S.T. Oyama, Comparison of Structural Properties of SiO2, Al2O3, and C/Al2O3Supported Ni2P catalysts. Studies in Surface Science and Catalysis. 159: p. 357-360.(2006).
[44].Cecilia, J.A., A. Infantes-Molina, E. Rodríguez-Castellón, and A. Jiménez-López, The Influence of the Support on the Formation of Ni2P Based Catalysts by a New Synthetic Approach. Study of the Catalytic Activity in the Hydrodesulfurization of Dibenzothiophene. The Journal of Physical Chemistry C. 113(39): p. 17032-17044.(2009).
[45].Wang, X., P. Clark, and S.T. Oyama, Synthesis, Characterization, and Hydrotreating Activity of Several Iron Group Transition Metal Phosphides. Journal of Catalysis. 208(2): p. 321-331.(2002).
[46].Korányi, T.I., Z. Vít, D.G. Poduval, R. Ryoo, H.S. Kim, and E.J.M. Hensen, SBA-15-supported nickel phosphide hydrotreating catalysts. Journal of Catalysis. 253(1): p. 119-131.(2008).
[47].Feitosa, L.F., G. Berhault, D. Laurenti, T.E. Davies, and V. Teixeira da Silva, Synthesis and hydrodeoxygenation activity of Ni2P/C – Effect of the palladium salt on lowering the nickel phosphide synthesis temperature. Journal of Catalysis. 340: p. 154-165.(2016).
[48].Rodriguez, J.A., R.A. Campbell, and D.W. Goodman, Electron donor-electron acceptor interactions in bimetallic surfaces: theory and XPS studies. The Journal of Physical Chemistry. 95(15): p. 5716-5719.(1991).
[49].Sawhill, S.J., D.C. Phillips, and M.E. Bussell, Thiophene hydrodesulfurization over supported nickel phosphide catalysts. Journal of Catalysis. 215(2): p. 208-219.(2003).
[50].Zhao, Y., Y. Zhao, H. Feng, and J. Shen, Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. Journal of Materials Chemistry. 21(22): p. 8137-8145.(2011).
[51].Guan, Q., F. Han, and W. Li, Catalytic performance and deoxygenation path of methyl palmitate on Ni2P/SiO2 synthesized using the thermal decomposition of nickel hypophosphite. RSC Advances. 6(37): p. 31308-31315.(2016).
[52].Liu, P., J.A. Rodriguez, T. Asakura, J. Gomes, and K. Nakamura, Desulfurization Reactions on Ni2P(001) and α-Mo2C(001) Surfaces: Complex Role of P and C Sites. The Journal of Physical Chemistry B. 109(10): p. 4575-4583.(2005).
[53].Nimmanwudipong, T., R.C. Runnebaum, D.E. Block, and B.C. Gates, Catalytic Conversion of Guaiacol Catalyzed by Platinum Supported on Alumina: Reaction Network Including Hydrodeoxygenation Reactions. Energy & Fuels. 25(8): p. 3417-3427.(2011).
[54].Wang, X. and R. Rinaldi, A Route for Lignin and Bio-Oil Conversion: Dehydroxylation of Phenols into Arenes by Catalytic Tandem Reactions. Angewandte Chemie International Edition. 52(44): p. 11499-11503.(2013).
[55].Wang, W., K. Zhang, H. Liu, Z. Qiao, Y. Yang, and K. Ren, Hydrodeoxygenation of p-cresol on unsupported Ni–P catalysts prepared by thermal decomposition method. Catalysis Communications. 41: p. 41-46.(2013).
[56].Sullivan, M.M., C.-J. Chen, and A. Bhan, Catalytic deoxygenation on transition metal carbide catalysts. Catalysis Science & Technology. 6(3): p. 602-616.(2016).
[57].Zanuttini, M.S., B.O. Dalla Costa, C.A. Querini, and M.A. Peralta, Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Applied Catalysis A: General. 482: p. 352-361.(2014).
[58].Huang, Y.-B., L. Yan, M.-Y. Chen, Q.-X. Guo, and Y. Fu, Selective hydrogenolysis of phenols and phenyl ethers to arenes through direct C-O cleavage over ruthenium-tungsten bifunctional catalysts. Green Chemistry. 17(5): p. 3010-3017.(2015).
[59].Aqsha, A., L. Katta, and N. Mahinpey, Catalytic Hydrodeoxygenation of Guaiacol as Lignin Model Component Using Ni-Mo/TiO2 and Ni-V/TiO2 Catalysts. Catalysis Letters. 145(6): p. 1351-1363.(2015).
[60].Robinson, A.M., J.E. Hensley, and J.W. Medlin, Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis. 6(8): p. 5026-5043.(2016).