簡易檢索 / 詳目顯示

研究生: 林宜臻
Lin, I-Chen
論文名稱: 覓隨追蹤與代償追蹤之年齡效應差異
Age-related differences in dynamic force control: pursuit tracking and compensatory tracking
指導教授: 黃英修
Hwang, Ing-Shou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 54
中文關鍵詞: 老化回饋前饋視覺動作任務力量變異
外文關鍵詞: Aging, Feedback, Feedforward, Visuomotor task, Force fluctuations
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究目的:視覺動作任務(visuomotor task)包含兩種主要的形式,代償性追蹤(compensatory tracking)及覓隨追蹤(pursuit tracking)。前者利用封閉式迴路控制(close-loop control)的方式以抗衡一外來虛擬阻力(virtual perturbation)並維持穩定力量輸出;後者則針對一可被視覺預測的動態軌跡並耦合(couple)其目標軌跡。視覺回饋的中樞訊息處理(central processing)已被證實會隨年齡老化而逐漸退化,並導致動作的穩定性產生改變。此外,因年齡(age-related differences)所產生的力量行為(force behaviors)表現差異可以反映出力量控制(force control)在中樞系統的回饋(feedback)及前饋(feedforward)處理會隨著老化而有不同程度的退化。因此,本研究目的為探討年齡效應於代償性追蹤及覓隨追蹤下各力量變異因子(force fluctuation properties)的差異。
    研究方法:本研究共收取17位23 ± 2.3歲健康年輕人及17位68.4 ± 7.3歲健康老年人。所有受試者均執行兩種不同追蹤作業。於覓隨追蹤作業下,受試者在9%至11%的最大自主用力(maximal voluntary contraction)範圍內,以右手的第一背側骨間肌(first dorsal interosseus)執行外展(abduction)等長收(isometric contraction)以耦合螢幕所出現之0.2Hz正弦波(sinusoidal wave);代償性追蹤作業則需維持10%的最大自主用力以抗衡一0.2Hz的虛擬正弦波。年輕組與老年組於兩種不同追蹤作業之力量行為表現與力量變異因子的標準化後的改變(normalized change)均以獨立t檢測是否有明顯不同,統計顯著水準為p < .05。
    實驗結果:結果顯示老年組的力量變異程度(size of force fluctuations)改變量較年輕組大且有統計學顯著的差異。此外,老年組標準化動作複雜程度(SampEn)改變量顯著小於年輕組。然而,其它力量因子參數變化量則未達到統計學上的顯著性。
    結論:年齡效應在兩種追蹤作業之力量特徵的差異顯示老年組執行視覺動作任務時的變動性較大。標準化力量變異程度於老年組有較大的改變,顯示老年人由代償性追蹤轉換至覓隨追蹤過程中有較大幅度的力量變動。此外,老年組標準化力量複雜度改變較年輕組小,顯示其覓隨追蹤轉換至代償性追蹤的過程中有較規律的力量表現。總結以上研究發現,老年人的中樞回饋控制系統會隨年齡而退化,因此,當執行須以回饋機制控制(feedback-based)的視覺動作任務時,老年人的動作表現會因對於視覺動作任務的修正策略(corrective strategy)能力退化而變得較為不穩定。

    Objective: There are two major forms of visuomotor tracking, compensatory and pursuit tracking. The former tracking is to counter virtual perturbation in need of closed-loop control, while the later entails to couple movement output to a moving target with a predictable trajectory. Central processing of visual feedback have been proved to degenerate with aging that causes changes in structure of movement variability. The age-related changes in force behaviors reflect a selective decline in the feedback and feedforward processes for force control with aging. The purpose of the present study was to investigate the age-related differences in force fluctuation properties between the conditions of compensatory tracking and pursuit tracking.
    Methods: 17 young health adults (23.0 ± 2.3) and 17 older health adults (68.4 ± 7.3) participated in the study. All participants were required to exert a load-varying isometric force to couple 0.2 Hz sinusoidal target wave in the range of 9%–11% MVC of index abduction of right first dorsal interosseus in pursuit tracking. The participants stabilized the target movement on the monitor at a constant level of 10% MVC, by resisting sinusoidal virtual perturbation during compensatory tracking. Normalized changes in force behaviors and force fluctuation properties between compensatory tracking and pursuit tracking for the two populations were contrasted.
    Results: The results of the study indicated that normalized difference in force fluctuations of the older adults was significantly greater than that of the young adults. In addition, the normalized difference in SampEn of the older adults was significantly greater than that of the young adults. Other force fluctuation properties in ratio of residual power, task error, correlation between the target and force trajectory and peak amplitude did not significantly differ with the older and the young adults.
    Conclusions: In summary, older adults had more force variability in visuomotor tasks by virtue of the differential age effect on force characteristics for the two tracking patterns. The greater normalized change in the size of force fluctuations for the elderly indicated the elderly were more variable in force control than young adults, when tracking task shifts from pursuit modes to compensatory mode. In addition, the less normalized change in the complexity of force fluctuations for the aged symbolized the aged exhibited a more regular force fluctuations than the young, when tracking task shifts from compensatory modes to pursuit modes. Thus, the provision of feedback-based visuomotor practice to the elderly should be aware of the fact that degenerative changes in feedback control could destabilize force output with less strategic richness for a visuomotor task.

    Abstract --------------------------------------------------------------------------------------------------I 摘要------------------------------------------------------------------------------------------------------III 致謝-------------------------------------------------------------------------------------------------------V Contents ------------------------------------------------------------------------------------------------VI List of Figures ---------------------------------------------------------------------------------------VIII Chapter 1. Introduction ------------------------------------------------------------------------- 1 1.1 Visuomotor task and corrective behaviors ---------------------------------------------- 1 1.2 Pursuit tracking and compensatory tracking -------------------------------------------- 3 1.3 Decline in Force control and force fluctuation in the elderly ------------------------- 5 1.3.1 Functional impairments of visual guidance and movement preprogramming in the elderly ----------------------------------------------------------------------------5 1.3.2 Dimensional changes in force fluctuations for the elderly during pursuit tracking --------------------------------------------------------------------------------- 6 1.4 Purposes and Hypothesis ------------------------------------------------------------------ 8 Chapter 2. Methods ------------------------------------------------------------------------------ 10 2.1 Participants ---------------------------------------------------------------------------------- 10 2.2 Experimental Setup and Procedures ----------------------------------------------------- 10 2.3 Data processing -----------------------------------------------------------------------------13 2.4 Statistical Analysis -------------------------------------------------------------------------16 Chapter 3. Results -------------------------------------------------------------------------------- 17 Chapter 4. Discussion ---------------------------------------------------------------------------- 20 4.1 Age-related decline in feedback process in visuomotor tracking -------------------- 20 4.2 Age-related decline in feedforward process in visuomotor tracking ---------------- 25 4.3 Clinical Implications ----------------------------------------------------------------------- 26 Chapter 5. Conclusion --------------------------------------------------------------------------- 28 References ------------------------------------------------------------------------------------------- 30

    Andrykiewicz, A., Patino, L., Naranjo, J.R., Witte, M., Hepp-Reymond, M.C., et al. (2007) Corticomuscular synchronization with small and large dynamic force output. BioMed Central Neuroscience, 8: 101.
    Balon, R.W., Jacobson K.M., Socotch T.M. (1993). The effect of aging on
    visual-vestibulo ocular responses. Experimental Brain Research, 95: 509–516.
    Baweja, H.S., Patel, B.K., Martinkewiz, J.D., Vu, J., Christou, E.A. (2009). Removal of 
visual feedback alters muscle activity and reduces force variability during 
constant isometric contractions. Experimental Brain Research, 197: 35–47. 

    Baweja, H.S., Kwon, M., Christou, E.A. (2012). Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle. Experimental Brain Research, 222(4):355-64.
    Cerella J., Hale S. (1994). The rise and fall in information-processing rates over the 
life span. Acta Psychologica, 86(2):109–97. 

    Chen, Y.C., Lin, Y.T., Huang, C.T., Shih, C.L., Yang, Z.R., Hwang, I.S. (2013). Trajectory adjustments underlying task-specific intermittent force behaviors and muscular rhythms. Public Library of Science One, 8(9):e74273.
    Christou, E.A., Jakobi, J.M., Critchlow, A., Fleshner, M., Enoka, R.M. (2004). The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults. The Journal of Applied Physiology, 97:225–235.
    Clark, B.C. & Manini, T.M. (2008). Sarcopenia =/= dynapenia. J Gerontol A. Biological Sciences and Medical Sciences, 63(8):829–34.

    Costa, M., Goldberger, A.L., Peng, C.K. (2002). Multiscale entropy analysis of 
complex physiologic time series. Physical Review Letters, 89: 068102. 

    Costa, M., Priplata, A.A., Lipsitz, L.A., Wu, Z., Huang, N.E., et al. (2007). Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhysics Letters, 77: 68008.

    Crossman, E.R. & Goodeve, P.J. (1983). Feedback control of hand-movement and Fitts’ law. The Journal of Experimental Psychology A, 35:251–278.
    Crossman, E.R. & Szafran, J. (1956). Changes with age in the speed of information-intake and discrimination. Experimental Gerontology, 4:128-35. 

    Deluca, C.J. & Erim Z (1994). Common drive of motor units in 
regulation of muscle force. Trends Neuroscience, 17:299–305. 

    Erim, Z., Beg, M.F., Burke, D.T., Deluca, C.J. (1999). Effects of aging on motor-unit control properties. The Journal of Neurophysiology, 82: 2081–2091. 

    Goldberger, A.L. & West, B.J. (1987). Fractals in physiology and medicine. Yale Journal of Biology and Medicine, 60: 421–435. 

    Grafton, S.T., Schmitt, P., Horn, J.V., Diedrichsen, J. (2008). Neural substrates of visuomotor learning based on improved feedback control and prediction.
    NeuroImage, 39(3), 1383–1395.
    Grealy, M.A., Lee, D.N. (2011). An automatic-voluntary dissociation and mental imagery disturbance following a cerebellar lesion. Neuropsychologia, 49:271–275.
    Greenwood, P.M. (2000). The frontal aging hypothesis evaluated. Journal of International Neuropsychological Society, 6(6): 705–726.
    Hausdorff, J.M., Peng, C.K., Ladin, Z., Wei, J.Y., Goldberger, A.L. (1994). Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. The Journal of Applied Physiology, 78: 349–358. 

    Heenan, M.L., Scheidt, R.A., Beardsley, S.A. (2011). Visual and Proprioceptive Contributions to Compensatory and Pursuit Tracking Movements in Humans.
    Conference Proceedings : Annual International Conference of the IEEE
    Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 7356–7359.
    Heenan, M., Scheidt, R.A., Beardsley, S.A. (2014). Age-related Differentiation of Sensorimotor Control Strategies during Pursuit and Compensatory Tracking. Conference Proceedings : Annual International Conference of the IEEE
    Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 3562–3565.
    Hwang, I.S. (in press). Aging effects on control and learning of sinusoidal visuomotor tracking. National Research Council Research Report.
    NSC100-2314-B006-005-MY3. Retrived fromhttp://ir.lib.ncku.edu.tw/handle/987654321/143828?locale=en-US
    Jordan, K., Newell, K.M. (2004) Task goal and grip force dynamics. Experimental Brain Research, 156: 451– 457. 

    Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S.M., Lipsitz, L.A., Goldberger, A.L. (1991). Aging and the complexity of cardiovascular dynamics. Biophysical Journal, 59: 945–949.
    Kawabuchi, M., Zhou, C.J., Wang, S., Nakamura, K., Liu, W.T., Hirata, K. (2001). The spatiotemporal relationship among schwann cells, axons and postsynaptic acetylcholine receptor regions during muscle reinnervation in aged rats. Anatomical Record, 264: 183–202. doi:10.1002/ar.1159
    Kennedy, D.M. & Christou, E.A. (2011) Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Experimental Brain Research, 213(4):351-61.
    Kuznetsov, N.A., Riley, M.A. (2010). Spatial resolution of visual feedback
    affects 
variability and structure of isometric force. Neuroscience Letters, 470: 121–125. 

    Manini, T.M. & Clark, B.C. (2011). Dynapenia and aging: an update. The Journal of Gerontology. Series A, Biological Science and Medical Science, 67(1):28–40.

    Miall, R.C., Weir, D.J., Stein, J.F. (1986). Manual tracking of visual targets by trained 
monkeys. Behavioral Brain Research, 20: 185–201. 

    Miall, R.C., Weir, D.J., Stein, J.F. (1993). Intermittency in human manual tracking 
tasks. Journal of Motor Behavior, 25: 53–63. 

    Milham, M.P., Erickson, K.I., Banich, M.T., Kramer, A.F., Webb, A., Wszalek, T., Cohen,
    N.J. (2002). Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain and Cognition, 49:277–296.
    Morrow, M.J., Sharpe, J.A. (1992). Smooth pursuit initiation in young and elderly subjects. Vision Research, 33:203–210.
    Navas, F., Stark, L. (1968). Sampling or intermittency in hand control system 
dynamics. Biophysical Journal, 8: 252–302. 

    Neely, K.A., Samimy, S., Blouch, S.L., Wang, P., Chennavasin, A., Diaz, M.T., Dennis, N.A. (2017). Memory-guided force control in healthy younger and older adults. Experimental Brain Research. doi: 10.1007/s00221-017-4987-3.
    Newell, K.M. & Corcos, D.M. (1993). Variability and Motor Control. Champaign, IL: Human Kinetics.
    Noble, M., Fitts, P.M., Warren, C.E. (1955). The frequency response of skilled subjects in a pursuit tracking task. Journal of Experimental Psychology, 49(4): 249–256.
    Ofori, E., Samson, J.M., Sosnoff, J.J. (2010). Age-related differences in force variability and visual display. Experimental Brain Research, 203:299–306.
    Pasalar, S., Roitman, A.V., Ebner, T.J. (2005). Effects of speeds and force fields on 
force intermittencys during circular manual tracking in humans. Experimental Brain Research, 
163: 214–225. 

    Pincus, S.M. (2001). Assessing serial irregularity and its implications for health. 
Annals of the New York Academic of Sciences, 954: 245–267. 

    Pisotta, I. & Molinari, M. (2014). Cerebellar contribution to feedforward control of locomotion. Frontiers in Human Neuroscience, 8, 475.
    Prakash, R.S., Erickson, K.I., Colcombe, S.J., Kim, J.S., Voss, M.W., Kramer, A.F. (2009). Age-related differences in the involvement of prefrontal cortex in attentional control. Brain and Cognition, 71:328–335.
    Russell, D.M. & Sternad, D. (2001). Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations? Journal of Motor Behavior, 33(4): 329–349. doi: 10.1080/00222890109601918
    Ryu, Y.U., Lee, K.H., Lee, H., Park, J. (2016). Age-related differences in control of a visuomotor coordination task: a preliminary study. Journal of Physical Therapy Science, 28(4), 1255–1259.
    Seidler, R.D., Noll, D.C., Thiers, G. (2004). Feedforward and feedback processes in motor control. NeuroImage, 22(4), 1775-1783. DOI:10.1016/j.neuroimage.2004.05.003Semmler, J.G. (2002). Motor unit synchronization and neuromuscular performance. Exercise and Sport Science Reviews, 30:8–14.
    Semmler, J.G., Sale, M.V., Meyer, F.G., Nordstrom, M.A. (2004). Motor-unit coherence and its relation with synchrony are influenced by training. Journal of Neurophysiology, 92:3320–3331.
    Semmler, J.G., Kornatz, K.W., Enoka, R.M. (2003). Motor-unit coherence during isometric contractions is greater in a hand muscle of older adults. Journal of Neurophysiology, 90: 1346 –1349.
    Simani, M.C., McGuire L.M.M, Sabes, P.N. (2007). Visual-shift adaptation is composed of separable sensory and task-dependent effects. Journal of Neurophysiology,
    98(5), 2827–2841.
    Sirigu, A., Duhamel, J.R., Cohen, L., Pillon, B., Dubois, B., Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273:1564–1568.
    Slifkin, A.B., Newell, K.M. (1999). Noise, information transmission, and force variability. Journal of Experimental Psychology: Human Perception and Performance, 25: 837–851.
    Slifkin, A.B., Vaillancourt, D.E., Newell, K.M. (2000). Intermittency in the control of 
continuous force production. Journal of Neurophysiology, 84: 1708–1718. 

    Sosnoff, J.J., Newell, K.M. (2005). Intermittency of visual information and the 
frequency of rhythmical force production. Journal of Motor Behavior, 37: 325–334. 

    Sosnoff, J.J. & Newell, K.M. (2006). Aging, visual intermittency, and variability in isometric force output. The Journal of Gerontology. Series B, Psychological Science, 61, 117–124.
    Sosnoff, J.J. & Newell, K. M. (2006b). Information processing limitations with aging in the visual scaling of isometric force. Experimental Brain Research, 170, 423–432. doi: 10.1007/s00221-005-0225-5
    Sosnoff, J.J. & Newell, K.M. (2008). Age-related loss of adaptability to fast time scales in motor variability. The Journal of Gerontology. Series B, Psychological Sciences and Social Sciences, 63(6): 344–52. 

    Temprado, J., Sleimen-Malkoun, R., Lemaire, P., Rey-Robert, B., Retornaz, F., Berton, E. (2013). Aging of sensorimotor processes: a systematic study in Fitts’ task. Experimental Brain Research, 228(1):105–16. 

    Tong, J., Maruta J., Heaton K.J., Maule A.L., Ghajar J. (2014). Adaptation of visual tracking synchronization after one night of sleep deprivation. Experimental Brain Research, 232(1): 121–131. Published online 2013 Oct 11.doi: 10.1007/s00221-013-3725-8
    Tracy, B.L., Maluf, K.S., Stephenson, J.L., Hunter, S.K., Enoka, R.M. (2005) Variability of motor unit discharge and force Fluctuations across a range of muscle forces in older adults. Muscle Nerve, 32:533–540
    Tracy, B.L., Dinenno, D.V., Jorgensen, B., Welsh, S.J. (2007). Aging, visuomotor correction, and force fluctuations in large muscles. Medicine and Science in Sports Exercise, 39(3):469-79.
    Tracy, B.L., Hitchcock, L.N., Welsh, S.J., Paxton, R.J., Feldman-Kothe, C.E. (2015). Visuomotor Correction is a Robust Contributor to Force Variability During Index Finger Abduction by Older Adults. Front Aging in Neuroscience, 7:229.Vaillancourt, D.E. & Newell, K.M. (2002). Changing complexity in human behavior and physiology through aging and disease. Neurobiology of Aging, 23: 1–11.
    Vaillancourt, D.E. & Newell, K.M. (2003). Aging and the time and frequency structure of force output variability. The Journal of Applied Physiology, 94(3):903–12.

    Vieluf, S., Temprado, J.J., Berton, E., Jirsa, V.K., Sleimen-Malkoun. R. (2015). Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes. BioMed Central Neuroscience, 16, 12.
    Walker, N., Philbin, D.A., Fisk, A.D. (1997). Age-related differences in movement control: adjusting force intermittency structure to optimize performance. The 
J Gerontology. Series B, Psychological Sciences and Social Sciences, 52: P40–52. 

    Welford, A.T. (1981). Signal, noise, performance, and age. Human Factors, 23(1):97–109. 

    Welsh, S.J., Dinenno, D.V., and Tracy, B.L. (2007). Variability of quadriceps femoris motor neuron discharge and muscle force in human aging. Experimental Brain Research, 179, 219–233. doi: 10.1007/s00221-006-0785-z
    Wichmann, T., Bergman, H., DeLong, M.R. (2017). Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. Journal of Neural Transmission (Vienna). doi: 10.1007/s00702-017-1736-5.
    Wickens, C.D., Braune, R., and Stokes, A. (1987). Age differences in the speed and capacity of information processing: 1. A dual-task approach. Psychology and Aging, 2, 70–78. doi: 10.1037/0882-7974.2.1.70
    Yates, F.E. (1984). The dynamics of adaptation in living systems. In: Adaptive Control of Ill-defined Systems, edited by Selfridge OG, Rissland EL, and Arbib MA. New York: Plenum.
    Yates, F.E. (1988). The dynamics of aging and time: how physical action implies social action. In: Emergent Theories of Aging, edited by Birren JE and Bengtson VL.
    New York: Springer.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE