簡易檢索 / 詳目顯示

研究生: 鄭郁陵
Cheng, Yu-Ling
論文名稱: 功能性聚矽氧烷奈米複合材料之製備及其在UV樹酯應用之研究
Synthesis of Functional Polysiloxane Nanocomposites and Their Application in UV-cured Resin
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機-無機混成紫外光硬化塗料功能性聚矽氧烷PET表面硬化處理
外文關鍵詞: Organic - inorganic hybrid UV curable coatings, Functional polysiloxane, PET hard coating treatment
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中探討聚矽氧烷之有機-無機混成紫外光硬化塗料應用於PET表面硬化處理。無機材料以溶膠-凝膠法合成類似多面體矽氧烷寡聚物(Polyheral Oligomeric Silsesquioxanes, POSS)的奈米結構,選用3-(甲基丙烯酰氧)丙基三甲氧基矽(3-(Methacryloyloxy)propyltrimethoxysilane, MAPTMS)和四乙氧基矽烷(tetraethyl orthosilicate, TEOS)在酸性催化下製備功能性聚矽氧烷,並且藉由控制聚矽氧烷之分子量與粒徑大小合成出類似POSS 奈米結構;有機材料選用環氧樹壓克力樹脂(酯)與聚氨壓克力樹脂(酯)。將有機-無機混成紫外光硬化塗料以旋轉塗佈在PET基板上,經過紫外光固化在基板上形成硬型塗膜,由SEM 結果分析製備出的硬型塗層中功能系聚矽氧烷可均勻分散在環氧壓克力與聚氨酯壓克力樹脂中;由不機械性能分析顯示,硬型塗膜在PET 基板上聚可撓性,可提升其硬度、附著度與光學性能,並且通過耐水性、耐溶劑、耐酸鹼等標準測試;最後,以化學蝕刻法與多層膜鍍膜製程再度提升塗膜在PET 上的機械性能。其所有結果皆與POSS 測試結果相同,證實本實驗製備成功出類似POSS之功能性聚矽氧烷。

    In this study, the UV curing of silica based organic – inorganic hybrid coating have been developed for the hard coat treatment on PET substrate. The inorganic materials were prepared by sol-gel method to produce the POSS-like nanostructures (Polyheral Oligomeric Silsesquioxanes, POSS), used 3-(Methacryloyloxy)- propyltrimethoxysilane (MAPTMS) to synthesis the functional polysiloxane in the presence of an acidic catalyst. By controlling the molecular weight and particle size of functional polysiloxane, the POSS-like nanostructures were obtained. The organic materials used polyurethane acrylate resin.
    Organic–inorganic hybrid coatings were spin-coated on PET substrate and UV-cured to form a hard coating film. The different mechanical tests of hybrid coatings show that it is flexible and can enhance the hardness, adhesion, transmittance of the PET substrate, and the tests of the water resistance, solvent resistance, acid and base resistance are all satisfactorily passed. The SEM results show that the functional polysiloxnae uniformly dispersed in the polyurethane acrylate resin. All the results are the same level as that of the POSS, so the study can synthesize the POSS-like functional polysiloxane.

    中文摘要 I Extended Abstrate II 誌謝 VIII 目錄 X 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 4 2-1 矽氧烷聚合物 4 2-1-1 矽氧烷聚合物簡介 4 2-1-2 多面體矽氧烷寡聚物(Polyheral Oligomeric Silsesquioxanes,POSS) 6 2-1-3 聚矽氧烷聚合物的製備 10 2-1-4 聚矽氧烷聚合物之性能 12 2-2 紫外光硬化塗料 14 2-2-1 紫外光固化原理 14 2-2-2 寡聚物(Oligomer) 19   2-2-2-1 環氧丙烯酸樹脂(Epoxy Acrylate) 19 2-2-2-2 聚氨酯丙烯酸酯樹脂(Polyurethane Acrylate) 19 2-2-2-3 聚酯丙烯酸酯(Polyester Acrylate) 20 2-2-2-4 矽酮丙烯酸酯(Silicon Acrylate) 20 2-2-3 單體(Monomer) 22 2-2-3-1 單官能基單體 22 2-2-3-2 雙官能基單體 22 2-2-3-3 多官能基單體 23 2-2-4 光起始劑(Photoinitiator) 25 2-2-5 助劑 27 2-3 紫外光硬化塗料應用 29 第三章 實驗方法與儀器 31 3-1 實驗藥品 31 3-2 實驗設備 34 3-3 實驗流程圖 36 3-3-1 功能性聚矽氧烷製備之流程 36 3-3-2 功能性聚矽氧與UV樹脂混合硬型保護塗膜之流程圖 37 3-4 實驗步驟 38 3-4-1 功能性聚矽氧烷之製備 38   3-4-2 功能性聚矽氧烷與UV樹脂混合硬型塗膜之製備 39 3-5 分析方法 40 3-5-1 掃瞄式電子顯微鏡 ( Scanning Electron Microscopy, SEM) 40 3-5-2 微區元素分析能譜儀 ( Energy Dispersive Spectrometer, EDS ) 40 3-5-3 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM) 40 3-5-4 表面輪廓粗度儀 ( Alpha-step , α-step ) 41 3-5-5 紫外光-可見光光譜儀 ( Ultraviolet-visible spectroscopy ) 41 3-5-6 膠體滲透層析儀 ( Gel Permeation Chromatographic ) 41 3-5-7 傅立葉紅外線光譜儀 (Fourier-Transform Infrared Spectrometer, FTIR ) 41 3-5-8 動態光散射雷射粒徑儀 ( Dynamic light scattering, DLS ) 42 3-5-9 鉛筆硬度測試 42 3-5-10 百格測試 43 第四章 結果與討論 45 4-1 功能性聚矽氧烷之合成分析 45 4-1-1 聚矽氧烷之合成分析 46 4-1-2 聚矽氧烷之分子量分析 51   4-1-3 聚矽氧烷之粒徑分析 52 4-1-4 聚矽氧烷之形態分析 54 4-2 聚矽氧烷與UV樹脂混成硬型塗層分析 59 4-2-1 聚矽氧烷與UV樹脂混成之硬型塗層測試標準 60 4-2-2 聚矽氧烷與UV樹脂混成之硬型塗層機械性能分析 64 4-2-3 聚矽氧烷與U V樹脂混摻之型態分析 78 4-3 不同方法以提升硬型塗層在基板之性能 82 4-3-1 化學溶劑蝕刻法 82 4-3-2 多層鍍膜製程 85 第五章 結論 89 第六章 未來展望 91 參考文獻 92   表目錄 表2-1 POSS與高分子之共聚方式優缺點 9 表2-2 Si、O、C分子結構特性 12 表2-3 UV-A、UV-B、UV-C波長特性 15 表2-4 單體官能基對性能之影響 23 表2-5 一般常用單體之特性 24 表2-6 陽離子聚合與自由基聚合之比較 26 表3-1 聚矽氧烷組成比例 38 表3-2 百格測試評定點數表 44 表4-1 紅外光譜峰值表 50 表4-2 GPC分析數據 51 表4-3 M之元素分析表 56 表4-4 M1T1之元素分析表 56 表4-5 EA樹脂系列硬型塗層 61 表4-6 PUA樹脂系列硬型塗層 62 表4-7 塗料性能測試標準 63 表4-8 UV樹脂和活性單體之體積收縮率 70 表4-9 EA樹脂系列硬型塗層之機械性能測試結果 76 表4-10 EA樹脂系列硬型塗層之機械性能測試結果 76   表4-11 PUA樹脂系列硬型塗層之機械性能測試結果 77 表4-12 PUA樹脂系列硬型塗層之機械性能測試結果 77 表4-13 PET抗溶劑程度 84 表4-14 M3E3A3硬型塗層之不同溶劑測試結果 84 表4-15 EA樹脂系列硬型塗層之多層膜測試結果 87 表4-16 EA樹脂系列硬型塗層之單層膜測試結果 87 表4-17 PUA 樹脂系列硬型塗層之雙層膜測試結果 88 表4-18 PUA 樹脂系列硬型塗層之單層膜測試結果 88 圖目錄 圖2-1 倍半矽氧烷的結構 8 圖2-2 多面低聚倍半矽氧烷((RSiO1.5)8)分子結構 9 圖2-3 二氧化矽的聚合行為 11 圖2-4 質子酸催化環氧基的開環聚合 18 圖2-5 不同系列之樹脂性能比較圖 21 圖2-6 紫外光固化反應示意圖 30 圖3-1 功能性聚矽氧烷合成流程圖 36 圖3-2 功能性聚矽氧烷與UV樹脂混成硬型塗膜流程圖 37 圖3-3 MAPTMS/TEOS聚合反應的示意圖 38 圖3-4 測試鉛筆示意圖 43 圖3-5 鉛筆硬度測試示意圖 43 圖4-1 MAPTMS合成不同反應時間之紅外線光譜 48 圖4-2 MAPTMS/TEOS合成不同反應時間之紅外線光譜 48 圖4-3 Polysiloxane與POSS紅外線光譜比較圖 49 圖4-4 M與M1T1之GPC圖 51 圖4-5 DLS 粒徑分析圖 (a) M (b) M1T1 (c) POSS-MA 53 圖4-6 MAPTMS合成聚矽氧烷於放大倍率 (a) 100 k (b) 10 k 之下SEM截面圖;MAPTMS/TEOS合成聚矽氧烷於放大倍率(c) 100k (d) 10k之下SEM截面圖 55 圖4-7 聚矽氧烷自由基聚合示意圖 56 圖4-8 MAPTMS 合成聚矽氧烷於放大倍率(a) 10 k (b) 60 k之下TEM圖;MAPTMS/TEOS合成聚矽氧烷於放大倍率(c) 20k (d) 30 k之下TEM圖 58 圖4-9 電漿表面處理示意圖 59 圖4-10 UV樹脂混摻硬化塗膜的高耐硬度性示意圖 65 圖4-11 UV固化反應 (a)自由基型聚合 (b)陽離子型聚合體積收縮率69 圖4-12 M3P3A3在PET基板上之可撓測試示意圖 72 圖4-13 EA樹脂系列硬型塗層之UV-Vis光譜分析圖 74 圖4-14 PUA樹脂系列硬型塗層之UV-Vis光譜分析圖 74 圖4-15 有機/無機混成材料示意圖 79 圖4-16 M3E3A3 於放大倍率(a) 50 k (b) 200 k 之下SEM圖截面圖;M1T13E3A3於放大倍率(c) 50 k (d) 200 k之下SEM圖截面圖;P3E3A3於放大倍率(e) 50 k (f) 200 k之下SEM圖截面圖 80 圖4-17 M3P3A3 於放大倍率 (a) 50 k (b) 200k 之下 SEM圖截面圖;M1T13P3A3於放大倍率 (c) 50 k (d) 200 k之下SEM圖截面圖;P3P3A3於放大倍率 (e) 200 k之下SEM圖截面圖 81 圖4-18 機械性互扣示意圖 83   圖4-19 多層膜鍍膜製程 86 圖4-20 PET多功能表面處理膜 91

    [1]王沛雯, "紫外光硬化丙烯酸酯的研究," 化學工程與材料工程學系, 東海大學, 2010.
    [2]E. Amerio, G. Malucelli1, M. Sangermano, and A. Priola, "Nanostructured hybrid materials obtained by UV curing and sol-gel processes involving alkoxysilane groups," e-Polymers, vol. 9, pp. 727–736, 2013.
    [3]V. Shukla, M. Bajpai, D.K. Singh, M.Singh, and R. Shukla, "Review of basic chemistry of UV-curing technology", Pigment & Resin Technology," Pigment & Resin Technology, vol. 33 pp. 272 - 279, 2004.
    [4]S. Sepeur, N. Kunze, B. Werner, and H. Schmidt, "UV curable hard coatings on plastics," Thin Solid Films, vol. 351, pp. 216-219, 1999.
    [5]M. Takarada, K. Sato, K. Yamamoto, and S. Mori, "Epoxy-group-containing silicon compound, inorganic submicron particles and antiomony compound," ed: Google Patents, 1992.
    [6]R. H. Chung, "Abrasion resistant ultraviolet light curable hard coating compositions," ed: Google Patents, 1982.
    [7]R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, "Silsesquioxanes," Chemical Reviews, vol. 95, pp. 1409-1430, 1995.
    [8]U. Schubert, "Polymers Reinforced by Covalently Bonded Inorganic Clusters," Chemistry of Materials, vol. 13, pp. 3487-3494, 2001.
    [9]U. Schubert, N. Huesing, and A. Lorenz, "Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides," Chemistry of Materials, vol. 7, pp. 2010-2027, 1995.
    [10]D. A. Loy and K. J. Shea, "Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials," Chemical Reviews, vol. 95, pp. 1431-1442, 1995.
    [11]K. J. Shea, D. A. Loy, and O. W. Webster, "Aryl-bridged polysilsesquioxanes--new microporous materials," Chemistry of Materials, vol. 1, pp. 572-574, 1989.
    [12]Richaed G. Jones, Wataru Ando, and J. Chojnowski, Silicon-Containing Polymer:The Science and Technology of Their Sythesis and application. USA: Kulwer Academic Publishers, 2000.
    [13]Available: http://baike.baidu.com/view/1196628.htm#reference-[1]-1196628-wrap
    [14]M. J. Wu and C. A. Shih, "Photo-curing polysiloxane composition and protective film formed from the same," ed: Google Patents, 2012.
    [15]D. W. Scott, "Thermal Rearrangement of Branched-Chain Methylpolysiloxanes1," Journal of the American Chemical Society, vol. 68, pp. 356-358, 1946.
    [16]F. J. Feher, D. A. Newman, and J. F. Walzer, "Silsesquioxanes as models for silica surfaces," Journal of the American Chemical Society, vol. 111, pp. 1741-1748, 1989.
    [17]J. D. Lichtenhan, N. Q. Vu, J. A. Carter, J. W. Gilman, and F. J. Feher, "Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes," Macromolecules, vol. 26, pp. 2141-2142, 1993.
    [18]J. D. Lichtenhan, Y. A. Otonari, and M. J. Carr, "Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers," Macromolecules, vol. 28, pp. 8435-8437, 1995.
    [19]K.M. Kim, D.K. Keum, and Y.Chujo, "Organic-Inorgnaic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquixane," Macromolecules, vol. 36, pp. 867-875, 2003.
    [20]J. D. Lichtenhan, "Polyhedral Oligomeric Silsesquioxanes: Building
    Blocks for Silsesquioxane-Based Polymers and Hybrid Materials.,"
    Sample copy Alert me Comments on Inorganic Chemistry, vol. 17, pp.
    115-130, 1995.
    [21]T.S. Haddad and J. D. Lichtenhan, "Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers," Macromolecules, vol. 29, pp. 7302-7304, 1996.
    [22]M. G. Voronkov and V. I. Lavrent’yev, "Polyhedral oligosilsesquioxanes and their homo derivatives," Topics in Current Chemistry vol. 102, p. 199, 1982.
    [23]J. D. Lichtenhan, J. W. Gilman, and F. J. Feher, "Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments," ed: Google Patents, 1996.
    [24]S.-C. Chan, S.-W. Kuo, and F.-C. Chang, "Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins," Macromolecules, vol. 38, pp. 3099-3107, 2005.
    [25]A. Striolo, C. McCabe, and P. T. Cummings, "Thermodynamic and Transport Properties of Polyhedral Oligomeric Sislesquioxanes in Poly(dimethylsiloxane)," The Journal of Physical Chemistry B, vol. 109, pp. 14300-14307, 2005.
    [26]D. Verchere, H. Sautereau, J. P. Pascault, C. C. Riccardi, S. M. Moschiar, and R. J. J. Williams, "Buildup of epoxycycloaliphatic amine networks. Kinetics, vitrification, and gelation," Macromolecules, vol. 23, pp. 725-731, 1990.
    [27]施宏道, "多面體寡體矽石/甲基丙烯酸脂系之奈米結構混成材料之研究," 化學工程與材料工程研究所, 國立中央大學, 2003.
    [28]J. Wen and G. L. Wilkes, "Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach," Chemistry of Materials, vol. 8, pp. 1667-1681, 1996.
    [29]R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. New York: Wiley,, 1979.
    [30]G. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects," Polymer, vol. 42, pp. 2395-2402, 2001.
    [31]G. Camino, S. M. Lomakin, and M. Lageard, "Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms," Polymer, vol. 43, pp. 2011-2015, 2002.
    [32]J. D. Jovanovic, M. N. Govedarica, P. R. Dvornic, and I. G. Popovic, "The thermogravimetric analysis of some polysiloxanes," Polymer Degradation and Stability, vol. 61, pp. 87-93, 1998.
    [33]余鳳兒, "改質聚氨酯/聚矽氧烷耐燒蝕材料研究," 材料科學研究所, 國立中山大學, 2004.
    [34]王學川,王固霞, "聚醚改性矽氧烷連酸酯的合成及應用," 日用化學工業, vol. 36, pp. 166-170, 2006.
    [35]Zhuang Caihong , Wang Hui , Yin Jian , Liu Haixia , Zhang Xianchao , and Chi Yi "Preparation of epoxy acrylate resin and its polyurethane
    modification," Journal of Central South University (Science and
    Technology) vol. 43, pp. 2574-2579, 2012.
    [36]Dr. M. Heylen, "Radiation Curable Protective Coatings: Innovative and Feasible Solutions for the Steel and Aluminium Industry."
    [37]王德海, 紫外光固化材料-理論與應用. 北京: 科學出版社, 2001.
    [38]C. G. Roffey, Photopolymerization of Surface Coating: John Wiley & Sons, 1982.
    [39]陳奇毅, "UVCurablePU樹脂於不同波長之反應性探討," 有機高分子研究所, 國立台北科技大學, 2002.
    [40]P. Innocenzi and G. Brusatin, "A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol–gel films," Journal of Non-Crystalline Solids, vol. 333, pp. 137-142, 2004.
    [41] N. Sakuma, "UV硬化塗料的關連技術與應用- 無機-有機混成型塗佈用樹脂的開發與機能性賦予", 2013.
    [42]"ASTM D3363-00 Standard Test Method for Film Hardness by Pencil Test," ed. United States: American Society for Testing and Materials
    [43]"ASTM D3359-08 Standard Test Methods for Measuring Adhesion by Tape Test," ed. United States: American Society for Testing and Materials.
    [44]G. Philipp and H. Schmidt, "New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process," Journal of Non-Crystalline Solids, vol. 63, pp. 283-292, 1984.
    [45]H. Schmidt, "New type of non-crystalline solids between inorganic and organic materials," Journal of Non-Crystalline Solids, vol. 73, pp. 681-691, 1985.
    [46]M. A. Rodriguez, M. J. Liso, F. Rubio, J. Rubio, and J. L. Oteo, "Study of the reaction of γ – methacryloxypropyltrimethoxysilane (γ – MPS) with slate surfaces," Journal of Materials Science, vol. 34, pp. 3867-3873, 1999.
    [47]M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufresne, "Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading," Composites Science and Technology, vol. 67, pp. 1627-1639, 2007.
    [48]J. P. Matinlinna, L. V. Lassila, M. Özcan, A. Yli-Urpo, and P. K. Vallittu, "An introduction to silanes and their clinical applications in dentistry," International Journal of Prosthodontics, vol. 17, 2004.
    [49]A. Franquet, H. Terryn, and J. Vereecken, "Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry," Thin Solid Films, vol. 441, pp. 76-84, 2003.
    [50]D. Zhu and W. J. van Ooij, "Structural characterization of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy," Journal of Adhesion Science and Technology, vol. 16, pp. 1235-1260, 2002.
    [51]T. Gunji, Y. Makabe, N. Takamura, and Y. Abe, "Preparation and characterization of organic–inorganic hybrids and coating films from 3-methacryloxypropylpolysilsesquioxane," Applied Organometallic Chemistry, vol. 15, pp. 683-692, 2001.
    [52]S. Jana, M. A. Lim, I. C. Baek, C. H. Kim, and S. I. Seok, "Non-hydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins," Materials Chemistry and Physics, vol. 112, pp. 1008-1014, 2008.
    [53]J. P. Matinlinna, L. V. J. Lassila, and P. K. Vallittu, "The effect of a novel silane blend system on resin bond strength to silica-coated Ti substrate," Journal of Dentistry, vol. 34, pp. 436-443, 2006.
    [54]J. P. Matinlinna, M. Özcan, L. V. J. Lassila, and P. K. Vallittu, "The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal," Dental Materials, vol. 20, pp. 804-813, 2004.
    [55]M. Pantoja, B. Díaz-Benito, F. Velasco, J. Abenojar, and J. C. del Real, "Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy," Applied Surface Science, vol. 255, pp. 6386-6390, 2009.
    [56]A. El hadad, D. Carbonell, V. Barranco, A. Jiménez-Morales, B. Casal, and J. Galván, "Preparation of sol–gel hybrid materials from γ-methacryloxypropyltrimethoxysilane and tetramethyl orthosilicate: study of the hydrolysis and condensation reactions," Colloid and Polymer Science, vol. 289, pp. 1875-1883, 2011.
    [57]N. M. Sulca, A. Lungu, R. Popescu, S. A. Garea, and H. Iovu, "New Polymeric Nanocomposites Based on Polyhedral Oligomeric Silsesquioxanes," MATERIALE PLASTICE vol. 46, 2009.
    [58]E. Bourgeat-Lami, I. Tissot, and F. Lefebvre, "Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization," Macromolecules, vol. 35, pp. 6185-6191, 2002.
    [59]M. S. Matheson, E. E. Auer, E. B. Bevilacqua, and E. J. Hart, "Rate Constants in Free Radical Polymerizations. IV. Methyl Acrylate1," Journal of the American Chemical Society, vol. 73, pp. 5395-5400, 1951.
    [60]K. F. Silveira, I. V. P. Yoshida, and S. P. Nunes, "Phase separation in PMMA/silica sol-gel systems," Polymer, vol. 36, pp. 1425-1434, 3// 1995.
    [61]J. Zhou, L. Wang, X. Dong, Q. Yang, J. Wang, H. Yu, et al., "Preparation of organic/inorganic hybrid nanomaterials using aggregates of poly(stearyl methacrylate)-b-poly(3-(trimethoxysilyl) propyl methacrylate) as precursor," European Polymer Journal, vol. 43, pp. 1736-1743, 2007.
    [62]洪昭南,郭有斌, "電漿反應器與原理 電漿反應器與原理," 化工技術, vol. 9, pp. 156-176, 2001.
    [63]"一種紫外線固化型光學樹脂黏合劑及其製備方法," ed: Google Patents, 2013.
    [64]吳健偉, 趙玉宇, 趙漢青, 何影翠, 匡弘, 于昕等人., "UV-固化膠黏劑收縮率的研究," 化學與黏合, vol. 27, pp. 96-100, 2005.
    [65]嚴正智,林曉東, "光固化塗層相對內應力與體積收縮率的研究," 北京化工大學學報, vol. 22, p. 22-26, 1995.
    [66]C. Decker, "10 - UV-Radiation Curing of Adhesives," in Handbook of Adhesives and Surface Preparation, S. Ebnesajjad, Ed., ed Oxford: William Andrew Publishing, pp. 221-243, 2011.
    [67]Wolfgang Fischer, Helmut Kuczewski, Diethelm Rappen, and J. Weikard, "Urethane Acrylates on Metal Substrates," in RadTech Europe 2005 Conference & Exhibition, Barcelona, 2005.
    [68]李松泰, "接著理論之探討 " 化工技術, vol. 9, pp. 53-85, 1985.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE