| 研究生: |
蔡東霖 Tsai, Tung-Lin |
|---|---|
| 論文名稱: |
橢圓波形套管換熱器之性能與場協同分析 Characterization of Elliptic-wave-shaped Heat Exchanger by Using Field Synergy Principle |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 熱交換器 、場協同理論 、性能評價指標 |
| 外文關鍵詞: | Heat-exchanger, Field Synergy Principle, Performance factor |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著社會不斷的進步,能源需求呈現指數成長,再加上環保意識的抬頭,人們開始重視“節能”的功能環節,提高效率是解決能源危機的方法之一。因此,近年來熱傳強化技術被廣泛應用於石油、化工、冶金、材料等工程領域,尤其在航空、電子器材及核能安全等領域應用更為廣泛。所以發展高效熱交換器具有龐大的經濟效益與商機。這也是本文研究重點。
本文探討一款雙套管逆流熱交換器,內管為熱流之橢圓波形,外管為冷流之圓形絕熱管,冷熱流體之間藉由內壁傳遞熱能,當固定外管冷流體雷諾數(Re=10000),可藉由控制內部熱流體雷諾數(10000 Re 60000),來模擬流場,以估算紐塞數與摩擦因子,並藉由 (綜合性能指標)來判斷熱傳強化之效率。
透過場協同理論與積耗散原理所推導出的速度場協同方程式做管內流場優化之模擬,發現在管內截面上產生渦流能使管壁面處的溫度梯度增加,使得熱傳量提升。因此,我們目標將流場中施以體積力,促使流場與溫度場混和,達到熱傳效率提升之結果。
從數值模擬結果得知紐塞數隨著雷諾數增加而成長,但與傳統圓管之比值卻會隨雷諾數增加而減少趨於某一定值, 的趨勢與紐塞數比值相同且 1,說明此熱強化管的表現很好。且強化管的場協同角比起圓管來小,解釋了強化管紐塞數比圓管高的現象。觀察管內流場,比起圓管,強化管內縱向流動旺盛,截面上出現六~八個渦流,破壞了溫度邊界層,說明擾動增加了熱傳效益。
With the depletion of global resources, we must find the way of energy saving. This article focus on heat exchanger's heat transfer effectiveness. This article uses "FLUENT" for analysis, this software has great ability on handling wide range of common flow simulation with finite element method.
In order to achieve the lifting of heat transfer, we refer to Field Synergy Principle and Entransy Dissipation Theory. Knowing that produce 6~8 vortexs near wall is the best way to enhance heat transfer. Therefore, we construct an elliptic-waved-shaped(EWS) heat exchanger to reach our goal. Except for EWS heat exchanger, there are circular、elliptical and circle-waved inner pipes to compare.
To prove the adventage of EWS heat exchanger, we observe four kinds of heat exchanger by Nusselt number、friction number and performance factor. Performance factor is a term applied to judge whether this kind of heat exchanger is efficient or not. When we lift the heat transfer, we need to consider pump power consumption. If pump power consumption's rate of increase is greater than heat transfer's rate of increase, this heat exchanger is not efficient.
[1] Bergles A E. Advanced enhancement-third generation heat transfer technology. Experimental Thermal and Fluid Science, 26:335-344, 2002.
[2] Bergles A E. ExHFT for fourth generation heat transfer technology. Experimental Thermal and Fluid Science, 26:335-344, 2002.
[3] Webb R L, Bergles A E. Heat transfer enhancement: second generation technology. Mechanical Engineering, 115(6):60-67, 1983.
[4] Bergles A E Some perspectives on enhanced heat transfer second Generation heat transfer technology. ASME Journal of Heat Transfer, 110:1082-1096, 1988.
[5] Bergles A E. Advanced enhancement-third generation heat transfer technology, or the “final frontier”. Trans IChemE, 79:437-444, 2001.
[6] Constantinos A. Balaras. A review of augmentation technigues for heat transfer in single-phase heat exchanger. Energy, 15(10):899-906, 1990.
[7] O’Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72. ASME Journal of Heat Transfer, 117:387-393, 1995.
[8] Eckels S J, Doerr T M, Pate M B. heat transfer and pressure drop of r-164a and ester lubricant mixtures in a smooth and a micro-fin tube: part I-evaporation. ASHRAE Transactions, 100(2):265-281, 1994.
[9] Eckels S J, Doerr T M, Pate M G. In-tube heat transfer and pressure drop of r-134a and ester lubricant mixtures in a smooth and a micro-fin tube: part II-condensation. ASHRAE Transactions, 100(2):283-294, 1994.
[10] Taslim M E, Li T, Spring S D. Measurements of heat transfer coefficients and friction factors in passages rib-roughened in all walls. Journal of Turbomachinery, Transactions of the ASME, 120(3):564-570, 1998.
[11] Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure loss by winglet vortex generators in a fin-tube element. Compact Heat Exchangers for Power and Precess Industries, HTD-n201, ASME, New York, 7-14, 1992.
[12] Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. Int. J. Heat Mass Transfer,37:2077-2087, 1994.
[13] Fukusako S, Yamada M, Kimoshita K, et al. Boiling heat transfer in liquid-saturated porous bed, Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, JSME, Tokyo, Japan and ASME, New York,v2:281-288, 1991.
[14] Lee J H, Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization. Chemical Engineering Communication, 87:21-52, 1990.
[15] Soria J, Norton M P. The Effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experiment Thermal and Fluid Science, 4:226-238, 1991.
[16] Hong J S. The study of ultrasonic enhancement of laminar and turbulent pipe flow via corona discharge. Int. J. Heat Mass Transfer, 34:1175-1187, 1991.
[17] Inagaki T, Komori K. Experiment study of heat transfer enhancement in turbulent natural convection along a vertical flow plate-part I: the effect of injection or sunction. Heat Transfer Japanese Research,22:387-397, 1993.
[18] Ma C F, Zhaeng Q, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large prandtl number liquid. Int. J. Heat Mass Transfer, 40(6):1481-1500, 1997.
[19] Yilmaz M, Comakli O, Yapici S. Enhancement of heat transfer by turbulent decaying swirl flow. Energy Conversion and Management. 40(13):1365-1376, 1999.
[20] Bali T, Ayhan T. Experimental investigation of propeller type swirl generator for a circular pipe flow. International Communication in Heat and Mass Transfer. 26(1): 13-22, 1999.
[21] Saha S K, Dutta A, Dhal S K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int. J. Heat Mass Transfer,44(22):4211-4223, 2001.
[22] Kiml R, Mochizuki S, Murata A. Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge. Journal of Heat Transfer-Transactions of the ASME, 123(4):675-681, 2001.
[23] Willett F T, Bergles A E. Heat transfer in rotating narrow rectangular ducts with heated sides oriented at 60 degrees to the r-z plane. Journal of Tubomachinert-Transactions of the ASME, 123(2):288-295, 2001.
[24] Murata A, Mochizuki S. Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int. J. Heat Mass Transfer, 44(6): 1127-1141, 2001.
[25] Asmantas L A, Nemira M A, Trilikauskas V V. Coefficients of heat transfer and hydraulic drag of a twisted oval tube. Heat Transfer-Soviet Research(USA), 17(4):103-109, 1985.
[26] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles. Izvestiya an Sssr: Energetika I Transport(USSR), 27(4):137-145, 1989.
[27] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles. Power Engineering(USSR), 27(4):128-136, 1989.
[28] Cho Y W, Chung S H, Shim J D, et al. Fluid flow and heat transfer in molten metal stirred by a circular inductor. Int. J. Heat Mass Transfer, 42(7):1317-1326, 1999.
[29] Kemmere M F, Meuldijk J, Drinkenburg A H, et al. Development of batch emulsion polymerization processes. Chemical Engineering Communications, 186: 217-239, 2001.
[30] Bergles A E. Handbook of heat transfer applications. New York: McGraw-Hill, 1985.
[31] Webb R L. Principle of Enhanced Heat Transfer. John Wiley & Sons, New York, ISBN 0-471-57778-2 , 1994.
[32] 過增元.對流換熱的物理機制及其控制:速度場與熱流場的協同.科學通報, 45(19): 2118~2122, 2000.
[33] 過增元,黃素逸.場協同原理與強化傳熱新技術.北京:中國電力出版社, 2004.10.
[34] 李忠信,過增元.對流熱傳優化的場協同理論.北京:科學出版社66~67, 2010.
[35] 過增元,梁新剛. 積-描述物體傳遞熱量能力的物理量.自然科學發展, 16(10):1288~1296, 2006.
[36] 昊晶,熱學中的勢能(積)及其應用.北京:清華大學, 2009.
[37] 昊晶,梁新剛.積值耗散原理在輻射換熱優化中的應用.中國科學, 39(2):272~277, 2009.
[38] 程新廣.積及其在傳熱優化中的應用.北京:清華大學, 2004.
[39] 孟繼安.基於場協同理論的縱向渦強化換熱技術及其應用.北京:清華大學, 2001.
[40] 陳群.對流換熱過程的不可逆性及其優化.北京:清華大學, 2008.
[41] Webb R L. Performance evaluation criteria for use of enhanced heat exchanger surfaces in heat exchanger design. Int. J Heat Mass Transfer, 24(4): 715-726, 1981.