簡易檢索 / 詳目顯示

研究生: 陳志文
Chen, Ji-Wen
論文名稱: 散射路徑在平板裂縫偵測之分析研究
Analysis For The Path Of Scattering Signal From Cracks In A Plate
指導教授: 楊澤民
Yang, Joe-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 時間反轉法自適聚焦陣列訊號處理裂縫
外文關鍵詞: time reversal method, self-focused, array signal processing, cracks
相關次數: 點閱:117下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時間反轉法理論(Time Reversal Method, TRM)已廣泛應用在結構非破壞檢測、水下聲學及醫學檢測上。其主要利用聲波可在非均勻介質中傳遞的特性,透過時間反轉法自適聚焦並還原至聲源點,將能量聚焦在裂縫上找出裂縫位置。但由於聲波在非均勻介質中傳遞仍會受幾何環境的影響,造成波形失焦及變形,以致聲束無法聚焦於聲源點,達不到預期的效果。
    本研究將採用陣列處理和自適聚焦技術克服多徑效應,同時並藉由裂縫傳遞散射波(scattered wave)至接收陣列的到達時間不同,經時間反轉法並將訊號正規化後自接收陣列反發射回平板模型中,可藉波與波的交疊形成一散射路徑聚焦回到裂縫,以偵測出裂縫實際位置。
    本研究運用ANSYS有限元分析軟體,以模擬的方式驗證時反法對平板裂縫位置偵測的可行性,當中並利用平面彎曲波在傳遞的過程中途經疲勞裂縫時所造成的散射波傳,透過時間反轉法找到裂縫位置。
    接著並期望利用疊代式時間反轉法的方式,試圖找出該疲勞裂縫所反應出的彈性共振頻率是否與裂縫的長度以及特性有關,並以掃頻的方式探討頻率對散射訊號強度的影響。

    The time reversal method has been widely used in non-destructive damage detection, underwater acoustic exploring, and medical monitoring. The proposed method utilizes the acoustic wave characteristics of having different propagating paths in an inhomogeneous media, such as a cracked plate. Based on this feature, the position of a crack in a plate can be found by the time reversal method, which can selectively focuses the re-emitting waves on the crack location to be detected. However, because of geometrical effects, which may result in the defocusing and distortion of the waveform and may cause the so-called the multi-path problem on wave propagation, the array signal processing method is then applied to solve the multi-path problem.
    In this study, a method, consisting of the array signal processing method and the self-focusing method, is proposed to deal with the multi-path effects and to find the exact crack location in a plate. In the method, the delayed time caused by different wave propagating paths in a cracked plate, is utilized to reconstruct a wave path pointing to the crack location.
    In the present investigation, the finite element analysis is used to simulate the surface wave propagation and to verify the validity of the proposed method in detecting a plate crack. In order to obtain the relationship between the characteristic frequencies and the degree of damage in a crack, the scatter signals, enhanced by iterative time reversal process, would be analyzed in frequency domain by Fast Fourier Transform Method. Furthermore, various frequencies of transmitted signals are able to be observed to identify the effect of these frequencies on the strength of scattered signals.

    目 錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論......1 1-1 前言......1 1-2 研究動機......3 1-3 文獻回顧......4 1-4 研究概念及目的......8 1-5 本文架構......12 第二章 基礎理論與訊號分析......13 2-1 前言......13 2-2 時間反轉法理論(Theory of Time Reversal Method, TRM)[14]......15 2-3 疊代式時間反轉法理論( Iterative Time Reversal Method, ITRM)[11][16]......19 2-4 波束成型法(Delay-and-Sum Beamforming )[5] 24 2-5 Morlet wavelet 函數......27 2-6 平板之振動分析理論......30 2-7 平板彎曲波之傳遞......33 2-8 奈氏定理(Nyquist Theorem)......35 第三章 數值分析與參數設定......37 3-1 前言......37 3-2 ANSYS有限元模型參數設定......39 3-3 發射訊號的設定......41 3-4 模態分析部分......44 第四章 模擬分析結果與討論......48 4-1 前言......48 4-2 陣列數目對時間反轉法後路徑構成之影響......53 4-3 應用時間反轉法構成散射路徑於平板裂縫偵測......58 4-4 應用波束成型法(Beamforming method)偵測裂縫能量交疊處......67 4-5 應用疊代式時間反轉法比較不同損傷程度所相應之特徵頻率......73 4-6 平板中散射訊號傳遞情形之探討......79 第五章 結果討論及未來展望......81 5-1 結果與討論......81 5-2 未來展望......84 參考文獻......87 自述......90   表目錄 表 1 參數及材料係數設定 ......40 表 2 無裂縫及裂縫50mm不同模態下之自然頻率......47 表 3 不同長度裂縫疊代次數相對於頻率變化表......76   圖目錄 圖 1 劃分量測區域示意圖......8 圖 2 時間反轉法於平板上操作流程圖......9 圖 3 陣列接收元件所接收散射訊號時間差示意圖......10 圖 4 訊號相減流程示意圖......11 圖 5 時間反轉法於平板傳遞示意圖[14]......15 圖 6 時間反轉法應用於平板之流程圖......16 圖 7 利用時反法結合陣列訊號處理構成路徑示意圖......18 圖 8 疊代式時間反轉法流程圖[11]......19 圖 9 奇數次及偶數次疊代次數處理結果示意圖[11]......20 圖 10 疊代時間反轉處理次數對於主要共振頻率影響[16]......22 圖 11 波束成型法之示意圖......25 圖 12 平板中波束成型法之應用......26 圖 13 Morlet wavelet波型圖......27 圖 14 時間反轉法應用於平板之波型選用[14]......28 圖 15 不同e^(〖-at〗^2/2)值所呈現之Morlet wavlet型態......29 圖 16 使用不同e^(〖-at〗^2/2)值所接收到之訊號......29 圖 17 兩邊固定及兩邊自由之平板示意圖......30 圖 18 波在二維平面傳遞之示意圖......34 圖 19 不合適的取樣速率所產生之混疊效應圖......36 圖 20 平板尺寸及邊界固定情形示意圖......40 圖 21 Morlet wavelet時域及頻域圖,左圖為時域訊號,右圖為頻域訊號......42 圖 22 無裂縫平板模態分析後第一至六個模態圖......45 圖 23 裂縫長度50 mm平板模態分析後第一至六個模態圖......45 圖 24 陣列接收元件擺放位置及量測範圍示意圖......46 圖 25 裂縫在邊界位置訊號相減示意圖,其中(a)圖為將訊號發射在無裂縫平板,(b)圖為發射在含未知有裂縫位置之平板,(c)圖為經相減後單從裂縫引發散射訊號之平板......48 圖 26 裂縫在中間位置訊號相減示意圖,其中(a)圖為將訊號發射在無裂縫平板,(b)圖為發射在含未知有裂縫位置之平板,(c)圖為經相減後單從裂縫引發散射訊號之平板......49 圖 27 訊號分析流程圖......51 圖 28 訊號傳遞方向示意圖,(b)為至(a)圖B端所接收到訊號,(d)圖為(b)圖經過時反處理後於(c)圖B端反發射之訊號......53 圖 29 十三個陣列接收元件所接收到之波群圖,左圖為陣列編號,右圖為陣列接收元件所接收之波形......54 圖 30 陣列接收元件擺放位置示意圖......55 圖 31 使用三個陣列接收元件之模擬分析圖(Case 1),左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......56 圖 32 使用五個陣列接收元件之模擬分析圖(Case 2),左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......56 圖 33 使用九個陣列接收元件之模擬分析圖(Case 3) ,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......56 圖 34 使用十三個陣列接收元件之模擬分析圖(Case 4) ,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......57 圖 35 裂縫在平板邊界位置示意圖......59 圖 36 裂縫於平板邊界中間位置模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......59 圖 37 裂縫於平板邊界中間靠左30(mm)位置模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......59 圖 38 裂縫在平板中間位置示意圖......61 圖 39 裂縫於平板中間位置模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......61 圖 40 雙裂縫於平板邊界位置示意圖......62 圖 41 雙裂縫於平板邊界同側位置模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......62 圖 42 雙裂縫於平板邊界上下兩側位置模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......63 圖 43 L形接收元件陣列擺放方式示意圖,圖43(a)為利用13個L形接收元件陣列對邊界裂縫偵測,圖43(b)利用19個接收元件陣列對邊界裂縫偵測,圖43(c)為對裂縫中間情況進行裂縫偵測......65 圖 44 以13個L形接收元件陣列對邊界裂縫偵測模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......65 圖 45 以19個L形接收元件陣列對邊界裂縫偵測模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......66 圖 46 19個L形接收元件陣列對裂縫於中間位置偵測模擬分析圖,左圖為發射在有裂縫的平板,右圖為發射在無裂縫的平板......66 圖 47 定義節點位置及陣列元件座標示意圖......68 圖 48 非裂縫位置波型平移疊加情形示意圖......69 圖 49 裂縫位置波型平移疊加情形示意圖......69 圖 50 訊號疊加誤差示意圖......70 圖 51 利用波束成型法對裂縫於邊界(左圖)及中間位置(右圖)兩種情形示意......71 圖 52 利用波束成型法對裂縫於邊界(左圖)及中間位置(右圖)兩種情形模擬分析圖......71 圖 53 疊代式時間反轉法於平板上處理流程示意圖......74 圖 54 疊代式時間反轉法於平板上處理流程示意圖,其中圖(a)為裂縫長度50 mm平板,圖(b)為裂縫長度80 mm平板......75 圖 55 兩塊平板疊代次數相對頻率變化分析圖,其中圖(a)為裂縫長度50 mm平板,圖(b)為裂縫長度80 mm平板......75 圖 56 不同發射頻率所接收到之散射訊號頻域圖,(a)~(f)分別表示為10 kHz~10 kHz發射訊號後所接收之訊號頻率......78 圖 57 從裂縫所引發之散射訊號於平板中的傳遞情形示意圖,(a)~(j)分別表示為不同時間點所擷取的分析圖......80 圖 58 不同發射頻率所構成之路徑成效示意圖,左圖為發射頻率50 kHz,右圖為發射頻率100 kHz......81 圖 59 未來展望及已完成項目之流程示意圖......86

    參考文獻
    [1] Draeger, C., Cassereau D., and Fink, M., “Theory of the Time Reversal Process in Solids”, J.A.S.A., pp.1289-1295, Sep 1997.
    [2] Fink, M., “Time-Reversal Mirrors”, J. Phys, D Appl, Phys, Vol.26, pp.1135-1142, 1993.
    [3] Fink, M., “Time-reversal Acoustics”, Physics Today, pp.34-39, March , 1997
    [4] Fink, M., et al., “Self-Focusing in Inhomogeneous Media with Time Reversal Acoustic Mirror”, IEEE Ultrasonic Symposium. Proc., pp.681-686, 1989.
    [5] Johnson, Don H. and Dudgeon, Dan E., “Array Signal Processing: Concepts and Techniques.” P T R Prentice Hall, Englewood Cliffs, NJ 07632.
    [6] Kim, J. S., Song, H. C., and Kuperman, W. A., “Adaptive time-reversal mirror,” J. A. S. A., Vol.109, No.5, 1817-1825, May 2001.
    [7] Kerbrat, E., Prada, C., Cassereau, D., Ing, R. K. and Fink, M., “Detection and imaging in complex media with the D.O.R.T. method,” IEEE Ultrasonic Symposium Proceedings, 779-783, 2000.
    [8] Kerbrat, E., Prada, C., Cassereau, D. and Fink, M., “Image in the presence of grain noise using the decomposition of the time reversal operator.” J. A. S. A., Vol.113, No.3, 1230-1240, Mar 2003.
    [9] Kerbrat, E., Ing, R.K., Prada, C., Cassereau, D. and Fink, M., “The D.O.R.T. method applied to detection and imaging in plates using Lamb waves,” AIP Conf. Proceedings, 934-940, Apr 2001.
    [10] Kerbrat, E., Clorennec, D., Prada, C., Royer, D., Cassereau, D., and Fink, M., “Detection of cracks in a thin air-filled hollow cylinder by application of the DORT method to elastic components of the echo,” Ultrasonics, Vol.40, No.1-8, 715-720, May 2002.
    [11] Prada, C., Thomas, J. and Fink, M., “The iterative time reversal process: Analysis of the convergence,” J. A. S. A., Vol.97, No.1, 62-71, Jan 1995.
    [12] Prada, C., Tanter, M. and Fink, M., “Flaw detection in solid with the D.O.R.T. method,” IEEE Ultrasonic Symposium Proceedings, 679-683, Oct 1997.
    [13] Song, H. C., Kuperman, W. A., and Hodgkiss, W. S., “Iterative time reversal in the ocean,” J. A. S. A., Vol.105, No.6, 3176-3184, Jun 1999.
    [14] Sohn, H., Park, H. W., Law, K. H. and Farrar, C. R., “Damage Detection in Composite Plates by Using an Enhanced Time Reversal Method ,” Journal of Aerospace Engineering, Vol.20, issue 3, pp.141-151, July 2007.
    [15] Sabra, K. G., Roux, P., Song, H. C., Hodgkiss, W. S., and Kuperman, W. A., “Experimental demonstration of iterative time-reversed reverberation focusing in a rough waveguide. Application to target detection,” J. A. S. A., Vol.120, No.3, 1305-1314, Sep 2006.
    [16] Waters, Z., Dzikowicz, B., Holt, R., and Roy, R., “Sensing a buried resonant object by single-channel time reversal,” IEEE Trans. UFFC, Vo1.56, No.7, 1429-1441, Jul 2009.
    [17] 陳永增、鄧惠源著,“非破壞檢測”,全華科技圖書股份有限公司,89年10月。
    [18] 林明宏,“時間反轉陣列之聚焦解析度分析,”國立台灣大學工程科學及海洋工程學系碩士論文,中華民國九十五年.
    [19] 林聖哲,“應用時間反轉法與微麥克風陣列於手機裝置之抗噪技術研究,”國立成功大學系統及船舶機電工程學系碩士論文,中華民國九十七年.
    [20] 吳柏賢,“麥克風陣列訊號處理於聲源訊號分離與聲場重建之應用研究,”國立成功大學系統及船舶機電工程學系博士論文,中華民國九十八年.
    [21] 黃彥叡,“時間反轉法應用於平板裂縫偵測,”國立成功大學系統及船舶機電工程學系碩士論文,中華民國九十八年.
    [22] 楊邦樑,“小波轉換應用於平板與樑的雙破損偵測之研究,”國立成功大學造船暨船舶機械工程研究所,碩士論文,中華民國九十六年六月.
    [23] 柯志宏,”二維離散小波轉換應用於帶有加強材之平板破損偵測,”國立成功大學造船暨船舶機械工程研究所,碩士論文,中華民國九十六年六月.
    [24] 楊澤民,楊正瑋,“小波轉換應用於板架結構的損傷偵測,”中國造船暨輪機工程學刊,Vol.28,No.4,pp.221-235,2009.
    [25] 黃怡中,“應用時間反轉法聚焦蘭姆波於缺陷檢測,”國立中山大學機械與機電工程學系碩士論文, 中華民國九十八年.
    [26] 林佳慶,“經驗模態分解法於敲擊回音法之應用, ”國立臺灣大學工學院應用力學研究所,碩士論文, 中華民國九十六年七月.

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE