| 研究生: |
郭保宏 Kuo, Pao-Hung |
|---|---|
| 論文名稱: |
小型液態火箭三維燃燒室流場之數值模擬 Numerical Simulations of the Three-Dimensional Flow in a Small Liquid Rocket Combustor |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 小型液態火箭 、三維燃燒室流場 、數值模擬 |
| 外文關鍵詞: | Numerical Simulations, Three-Dimensional Flow in a Combustor, Small Liquid Rocket |
| 相關次數: | 點閱:101 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙推進劑液體火箭引擎燃燒室的注油及燃燒過程中,同時存在有液態噴流﹑噴霧液滴、及油料與氧化劑之蒸汽,其流場為一複雜且具高度紊性之燃燒流場。本論文以小型雙推進劑液體火箭燃燒室為模擬目標,成功地建立一三維燃燒流場之電腦模擬程式,並以此程式探討各種參數組合對燃燒流場及燃燒室壁溫之影響。數值模擬所採用之數學及物理模式包括:液滴衝擊霧化模式、氣相計算模式、k-e紊流模式以及化學反應模式。三維格點的建立則採用區塊結構格點,進行模擬之流場包含燃燒室本身及後方斂散噴嘴等區域。
由數值模擬結果可知,雙推進劑衝擊霧化模式對整個燃燒流場影響最大。增加冷卻用燃油比例會造成整體燃料及氧化劑衝擊霧化後液滴往壁面偏移現象,燃燒室局部最高溫度及壓力之下降。而在燃燒室前端,因燃燒劇烈導致會有氣流外噴的情形,使得燃燒室前端溫度略高。在改變霧化後液滴分布及增大冷卻注油擴散角,整體上對於前端的高溫有其些微的降低。
The combustion flow in the combustion chamber of the bipropellant liquid rocket engine is complex and highly turbulent flow, involving the interactions between the liquid jet, spray droplets, vaporous fuel and oxidizer during the injection and combustion periods. In the present study, it is the main purpose to model a small-size bipropellant liquid rocket combustor and to successfully develop a computer code simulating the three-dimensional combustion flow. The effects of various combinations of parameters on the combustor flow and wall temperatures of the combustor are subsequently investigated using the newly developed code. The adopted numerical and physical models include droplet impingement and atomization model, k-e turbulence model, and chemical reactions. The three-dimensional computational mesh is generated by means of the multiple block-structured grid system. The computational domain consists of the combustor and the attached convergent-divergent nozzle.
Influences of the impingement and atomization of fuel and oxidizer, cooling fuel ratio, injection angle, and spray cone angle on the combustion flow characteristics have been successfully investigated in the present study. The impingement and atomization of bipropellants are shown of most importance for adequately modeling the overall combustion process. The calculated results indicate that the increase of the cooling fuel ratio leads to the fuel and oxidizer droplets after the impinging atomization moving toward the combustor wall. This occurrence thus results in the decrease of local maximum temperature and chamber pressure. Because of severe combustion, flow jet out in front of chamber and then the temperature is higher there. In generally, droplet atomization condition and increasing of cooling injector angle decrease temperature little in front of chamber.
參考文獻
1. P. Y. Liang, S. Fisher and Y. M. Chang,“Comprehensive Modeling of a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 2, No. 2, pp97-104, 1986.
2. P. Y. Liang, R. J. Jensen and Y. M. Chang,“Numerical Analysis of SSME Preburner Injector Atomization and Combustion Process,”Journal of Propulsion and Power, Vol. 3, No. 6, pp.508-514, 1987.
3. L. C. Cloutman, J. K. Dukowicz, J. D. Ramshaw and A. A. Amsden, “CONCHAS-SPRAY:A Computer Code for Reactive Flows with Fuel Sprays,”Los Alamos National Lab., Los Alamos, NM, Rept. LA-9294-MS, May 1982.
4. H. H. Chiu, T. L. Jiang, G. F. Berry, and E. J. Croke,“Analytical Prediction of Combustion Performance Characteristic of Bipropellant Liquid Rocket Engine Combustor,”23rd JANNAF Combustion Meeting, NASA Langley Research Center, Hampton, Virginia, October 1986.
5. T. L. Jiang and H. H. Chiu,“Bipropellant Combustion in a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 8, pp. 995-1003, 1992.
6. T. L. Jiang, "Computer Simulation System of a Liquid-propellant Rocket Combustor (III)," Defense Technology Coordination Council, Report NSC-84-2623-D-006-004, 1995.
7. M. L. Louis and S. M. Jeng, “Bipropellant Spray Combustion Modeling in Small Rocket Engines,” AIAA/SAE/ASME/ASEE, 27th Joint Propulsion Conference, June 24-26, 1991.
8. W. S. Nie and F. C. Zhuang, “Effect of spray characteristic on the liquid rocket combustion stability,” Journal of Propulsion Technology, Vol.21 No.3, 2000.
9. J. D. Naber and R. D. Reitz, ”Modeling Engine Spray/Wall Impingement,” SAE 880107.
10. H. H. Chiu, T. L. Jiang, A. N. Krebsbach and K. W. Gross,“Numerical Analysis of Bipropellant Combustion in Orbital Maneuvering Vehicle Thrust Chamber,”AIAA Paper 90-0045, Jan. 1990.
11. W. S. Nie and F. C. Zhuang, “Hypergolic propellant rocket engine combustion instability studies,” Journal of Propulsion Technology, Vol.21 No.4, 2000.
12. R. N. Eulner, D. E. White and L. M. Wood, “High Speed Shadow and Schlieren Photographs of the Combustion of N2O4/50%/N2H4-50% UDMH in a Small Windowed Combustion Chamber,” 5th ICRPG Combustion Conference, PIA Publication No. 183, October 1-3, 1968.
13. R. F. Sawyer, “The Hydrazine-Nitrogen Tetroxide Reaction, A Comparison of Experimental Observations,” 3rd Combustion Conference, CPIA Publication Np. 138 Vol 1, February 1967.
14. T. L. Jiang, C. C. Liu, W. S. Chen, “Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Combust. Sci. and Tech, 1994, Vol 97, pp. 271-301.
15. T. L. Jiang, W. Huang, and C. C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.4, pp.373-385, 1996.
16. 江滄柳、朱書宏,“小型液態火箭三維氣相燃燒流場之數值模擬,’’國立成功大學航太所碩士論文,九十學年度
17. B. J. Matthews, R. F. Wuerker and R. F. Kemp, “Holography of Injection and Combustion Phenomena,”6th ICRPG Combustion Conference, CPIA Publication No. 192, Vol. 1, December 1969.
18. D. D. Evans, H. B. Stanford, and R. W. Riebling, ``The Effect of Injector-Element Scale on the Mixing and Combustion of Nitrogen Tetroxide-Hydrazine Propellants,’’ Technical Report 32-1178, Jet Propulsion Laboratory, California Institute of Technology, 1967.
19. L. B. Zung, and J. R. White, ``Combustion Process of Impinging Hypergolic Propellants,’’ NASA CR-1704, 1971.
20. R. Lecourt, R. Foucaud, G. Lavergne, P. Berthoumieu, and P. Millan, ``Hypergolic Propellant Burning Spray Visualization by Laser Sheet Method. Application to Droplet Size and Liquid Concentration Measurements,’’ Third Symposium on Experimental and Numerical Flow Visualization, 1993 ASME Winter Annual Meeting, USA, 1993.
21. W. H. Lai, T. L. Jiang, and W. Huang, “Characteristic Study on the Like-doublet Impinging Jets Atomization,’’ Atomization and Sprays,vol. 9, 1999.
22. 袁曉峰、陳威丞,“異質噴流衝擊霧化之觀察,’’國立成功大學航太所碩士論文,八十九學年度.
23. JANAF Thermochemical Tables, 2nd ed., U.S. Standard Reference Data System NSRDS-NBS 37, June 1971.
24. H. Miyajina, T. Mitani, S. Sato, S. Ueda, K. Tani, T. Hiraiwa, K. Ito, K. Kusaka, M. Izumikawa, K. Kisara, T. Kumagai, N. Sakuranaka, T. Saito, and M. Takahashi, ``Studies on Scramjet Nozzles,’’ Technical Report of National Aerospace Laboratory TR-1149, 1992.
25. A. A. Amsden, “KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory Report LA-12503-MS, 1993.
26. T. L. Jiang, “Numerical Analyses on the Combustor Performance of Various Side-Dump Liquid-Fueled Ramjets (I),” 國推會研究計劃報告書, NSC 88-2623-D-006-011, 1999.
27. A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II : A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
28. S. Menon and W. H. Jou, “Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor,” Combustion Science and Technology, Vol. 75, pp. 53-72, 1991.
29. R. H. Yen and T. H. Ko, “Effects of Side-Inlet Angle in a Three- Dimensional Side-Dump Combustor,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993.
30. D. G. Sloan, P. J. Smith and L. D. Smoot, “Modeling of Swirling in Turbulent Flow Systems,” Progress in Energy and Combustion Science, Vol. 12, pp. 163-250, 1986.
31. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
32. C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
33. W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.
34. S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D.C., 1980.
35. Rotondi, R., Bella, G., Grimaldi, C., and Postrioti, L., “Atomization of High-Pressure Diesel Spray:Experimental Validtion of a New Breakup Model, ”SAE Technical Paper 2001-01-1070.
36. Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, 2nd edition.