簡易檢索 / 詳目顯示

研究生: 郭保宏
Kuo, Pao-Hung
論文名稱: 小型液態火箭三維燃燒室流場之數值模擬
Numerical Simulations of the Three-Dimensional Flow in a Small Liquid Rocket Combustor
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 78
中文關鍵詞: 小型液態火箭三維燃燒室流場數值模擬
外文關鍵詞: Numerical Simulations, Three-Dimensional Flow in a Combustor, Small Liquid Rocket
相關次數: 點閱:101下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   雙推進劑液體火箭引擎燃燒室的注油及燃燒過程中,同時存在有液態噴流﹑噴霧液滴、及油料與氧化劑之蒸汽,其流場為一複雜且具高度紊性之燃燒流場。本論文以小型雙推進劑液體火箭燃燒室為模擬目標,成功地建立一三維燃燒流場之電腦模擬程式,並以此程式探討各種參數組合對燃燒流場及燃燒室壁溫之影響。數值模擬所採用之數學及物理模式包括:液滴衝擊霧化模式、氣相計算模式、k-e紊流模式以及化學反應模式。三維格點的建立則採用區塊結構格點,進行模擬之流場包含燃燒室本身及後方斂散噴嘴等區域。
      由數值模擬結果可知,雙推進劑衝擊霧化模式對整個燃燒流場影響最大。增加冷卻用燃油比例會造成整體燃料及氧化劑衝擊霧化後液滴往壁面偏移現象,燃燒室局部最高溫度及壓力之下降。而在燃燒室前端,因燃燒劇烈導致會有氣流外噴的情形,使得燃燒室前端溫度略高。在改變霧化後液滴分布及增大冷卻注油擴散角,整體上對於前端的高溫有其些微的降低。

      The combustion flow in the combustion chamber of the bipropellant liquid rocket engine is complex and highly turbulent flow, involving the interactions between the liquid jet, spray droplets, vaporous fuel and oxidizer during the injection and combustion periods. In the present study, it is the main purpose to model a small-size bipropellant liquid rocket combustor and to successfully develop a computer code simulating the three-dimensional combustion flow. The effects of various combinations of parameters on the combustor flow and wall temperatures of the combustor are subsequently investigated using the newly developed code. The adopted numerical and physical models include droplet impingement and atomization model, k-e turbulence model, and chemical reactions. The three-dimensional computational mesh is generated by means of the multiple block-structured grid system. The computational domain consists of the combustor and the attached convergent-divergent nozzle.
      Influences of the impingement and atomization of fuel and oxidizer, cooling fuel ratio, injection angle, and spray cone angle on the combustion flow characteristics have been successfully investigated in the present study. The impingement and atomization of bipropellants are shown of most importance for adequately modeling the overall combustion process. The calculated results indicate that the increase of the cooling fuel ratio leads to the fuel and oxidizer droplets after the impinging atomization moving toward the combustor wall. This occurrence thus results in the decrease of local maximum temperature and chamber pressure. Because of severe combustion, flow jet out in front of chamber and then the temperature is higher there. In generally, droplet atomization condition and increasing of cooling injector angle decrease temperature little in front of chamber.

    目錄 中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號說明 x 第一章 導論 1 §1-1 前言 1 §1-2 文獻回顧 2 §1-2-1 CFD技術應用在雙推進燃料燃燒分析 2 §1-2-2 自燃性推進劑燃燒模式之研究 4 §1-3 研究動機 8 第二章 物理及數學模式 9 §2-1 基本假設 9 §2-2 紊流模式 10 §2-3 邊牆函數 10 §2-4 氣相流場統御方程式 10 §2-5 雙推進劑衝擊霧化模式 12 §2-6油滴與氣相流場的關係 13 §2-7蒸發模式 13 §2-8化學反應模式 14 §2-8-1 動態化學反應 15 §2-8-2 平衡化學反應 16 第三章 數值方法與格點系統 18 §3-1 簡介 18 §3-2 計算程序 18 §3-3 格點系統 19 第四章 結果與討論 22 §4-1 衝擊霧化之比較 23 §4-2 改變冷卻燃油用量比例之影響 24 §4-3 霧化擴散角與霧化液滴分布之比較 26 §4-4 增加冷卻注油擴散角之比較 27 第五章 結論與建議 29 參考文獻 30 自述 77 著作權聲明 78 表目錄 附表一 NTO/MMH各項性質一覽表 35 附表二 操作條件一覽表 36 附表三離開燃燒室未蒸發之液滴質量流率百分比 37 圖目錄 圖(1)液滴衝擊平面示意 38 圖(2)液滴霧化扇面示意圖 38 圖(3)對衝噴流噴嘴位置圖 39 圖(4)液滴受氣流影響圖 40 圖(4-1)修改過後之液滴圖 40 圖(5)格點後視圖 41 圖(6)格點前視圖 41 圖(7)格點3-D圖 41 圖(8)燃油及氧化劑噴注示意圖 42 圖(9)Case 1液滴碰撞圖 43 圖(10)Case 1 x-z平面溫度圖 44 圖(11)Case 2液滴衝擊霧化圖 45 圖(12)Case 2側向碰撞圖 46 圖(13)Case 2正向碰撞圖 46 圖(14)Case 2 x-z平面溫度圖 47 圖(15)3-D氣相流場向量圖 48 圖(16)Case 2衝擊點溫度圖(Z=0.18㎝) 49 圖(17)Case 3液滴側向霧化圖 50 圖(18)Case 4液滴側向霧化圖 51 圖(19)Case 3 x-z平面溫度圖 52 圖(20)Case 4 x-z平面溫度圖 53 圖(21)Case 2 x-y平面溫度圖(Z=1.5㎝) 54 圖(22)Case 3 x-y平面溫度圖(Z=1.5㎝) 55 圖(23)Case 4 x-y平面溫度圖(Z=1.5㎝) 56 圖(24)Case 2 x-z 平面壓力圖 57 圖(25)Case 3 x-z 平面壓力圖 58 圖(26)Case 4 x-z 平面壓力圖 59 圖(27)Case 2 立體壁面溫度圖 60 圖(28)對噴流壁面曲線溫度圖 61 圖(29)直接噴注冷卻用燃油壁面曲線溫度圖 62 圖(30)未直接噴注壁面曲線溫度圖 63 圖(31)Case 5 油滴正向霧化圖 64 圖(32)Case 5 x-z平面溫度圖 65 圖(33)Case 5 x-z平面壓力圖 66 圖(34)Case 5 立體壁面溫度圖 67 圖(35)Case 6 x-z平面溫度圖 68 圖(36)Case 6 x-z平面壓力圖 69 圖(37)Case 6 立體壁面溫度圖 70 圖(38)對衝噴流壁面溫度曲線比較圖 71 圖(39)x-z平面氣相流場圖 72 圖(40)Case 7 x-z平面溫度圖 73 圖(41)Case 7x-z平面壓力圖 74 圖(42)對衝噴流壁面溫度曲線圖 75 圖(43)冷卻面壁溫曲線圖 76

    參考文獻
    1. P. Y. Liang, S. Fisher and Y. M. Chang,“Comprehensive Modeling of a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 2, No. 2, pp97-104, 1986.
    2. P. Y. Liang, R. J. Jensen and Y. M. Chang,“Numerical Analysis of SSME Preburner Injector Atomization and Combustion Process,”Journal of Propulsion and Power, Vol. 3, No. 6, pp.508-514, 1987.
    3. L. C. Cloutman, J. K. Dukowicz, J. D. Ramshaw and A. A. Amsden, “CONCHAS-SPRAY:A Computer Code for Reactive Flows with Fuel Sprays,”Los Alamos National Lab., Los Alamos, NM, Rept. LA-9294-MS, May 1982.
    4. H. H. Chiu, T. L. Jiang, G. F. Berry, and E. J. Croke,“Analytical Prediction of Combustion Performance Characteristic of Bipropellant Liquid Rocket Engine Combustor,”23rd JANNAF Combustion Meeting, NASA Langley Research Center, Hampton, Virginia, October 1986.
    5. T. L. Jiang and H. H. Chiu,“Bipropellant Combustion in a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 8, pp. 995-1003, 1992.
    6. T. L. Jiang, "Computer Simulation System of a Liquid-propellant Rocket Combustor (III)," Defense Technology Coordination Council, Report NSC-84-2623-D-006-004, 1995.
    7. M. L. Louis and S. M. Jeng, “Bipropellant Spray Combustion Modeling in Small Rocket Engines,” AIAA/SAE/ASME/ASEE, 27th Joint Propulsion Conference, June 24-26, 1991.
    8. W. S. Nie and F. C. Zhuang, “Effect of spray characteristic on the liquid rocket combustion stability,” Journal of Propulsion Technology, Vol.21 No.3, 2000.
    9. J. D. Naber and R. D. Reitz, ”Modeling Engine Spray/Wall Impingement,” SAE 880107.
    10. H. H. Chiu, T. L. Jiang, A. N. Krebsbach and K. W. Gross,“Numerical Analysis of Bipropellant Combustion in Orbital Maneuvering Vehicle Thrust Chamber,”AIAA Paper 90-0045, Jan. 1990.
    11. W. S. Nie and F. C. Zhuang, “Hypergolic propellant rocket engine combustion instability studies,” Journal of Propulsion Technology, Vol.21 No.4, 2000.
    12. R. N. Eulner, D. E. White and L. M. Wood, “High Speed Shadow and Schlieren Photographs of the Combustion of N2O4/50%/N2H4-50% UDMH in a Small Windowed Combustion Chamber,” 5th ICRPG Combustion Conference, PIA Publication No. 183, October 1-3, 1968.
    13. R. F. Sawyer, “The Hydrazine-Nitrogen Tetroxide Reaction, A Comparison of Experimental Observations,” 3rd Combustion Conference, CPIA Publication Np. 138 Vol 1, February 1967.
    14. T. L. Jiang, C. C. Liu, W. S. Chen, “Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Combust. Sci. and Tech, 1994, Vol 97, pp. 271-301.
    15. T. L. Jiang, W. Huang, and C. C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.4, pp.373-385, 1996.
    16. 江滄柳、朱書宏,“小型液態火箭三維氣相燃燒流場之數值模擬,’’國立成功大學航太所碩士論文,九十學年度
    17. B. J. Matthews, R. F. Wuerker and R. F. Kemp, “Holography of Injection and Combustion Phenomena,”6th ICRPG Combustion Conference, CPIA Publication No. 192, Vol. 1, December 1969.
    18. D. D. Evans, H. B. Stanford, and R. W. Riebling, ``The Effect of Injector-Element Scale on the Mixing and Combustion of Nitrogen Tetroxide-Hydrazine Propellants,’’ Technical Report 32-1178, Jet Propulsion Laboratory, California Institute of Technology, 1967.
    19. L. B. Zung, and J. R. White, ``Combustion Process of Impinging Hypergolic Propellants,’’ NASA CR-1704, 1971.
    20. R. Lecourt, R. Foucaud, G. Lavergne, P. Berthoumieu, and P. Millan, ``Hypergolic Propellant Burning Spray Visualization by Laser Sheet Method. Application to Droplet Size and Liquid Concentration Measurements,’’ Third Symposium on Experimental and Numerical Flow Visualization, 1993 ASME Winter Annual Meeting, USA, 1993.
    21. W. H. Lai, T. L. Jiang, and W. Huang, “Characteristic Study on the Like-doublet Impinging Jets Atomization,’’ Atomization and Sprays,vol. 9, 1999.
    22. 袁曉峰、陳威丞,“異質噴流衝擊霧化之觀察,’’國立成功大學航太所碩士論文,八十九學年度.
    23. JANAF Thermochemical Tables, 2nd ed., U.S. Standard Reference Data System NSRDS-NBS 37, June 1971.
    24. H. Miyajina, T. Mitani, S. Sato, S. Ueda, K. Tani, T. Hiraiwa, K. Ito, K. Kusaka, M. Izumikawa, K. Kisara, T. Kumagai, N. Sakuranaka, T. Saito, and M. Takahashi, ``Studies on Scramjet Nozzles,’’ Technical Report of National Aerospace Laboratory TR-1149, 1992.
    25. A. A. Amsden, “KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory Report LA-12503-MS, 1993.
    26. T. L. Jiang, “Numerical Analyses on the Combustor Performance of Various Side-Dump Liquid-Fueled Ramjets (I),” 國推會研究計劃報告書, NSC 88-2623-D-006-011, 1999.
    27. A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II : A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
    28. S. Menon and W. H. Jou, “Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor,” Combustion Science and Technology, Vol. 75, pp. 53-72, 1991.
    29. R. H. Yen and T. H. Ko, “Effects of Side-Inlet Angle in a Three- Dimensional Side-Dump Combustor,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993.
    30. D. G. Sloan, P. J. Smith and L. D. Smoot, “Modeling of Swirling in Turbulent Flow Systems,” Progress in Energy and Combustion Science, Vol. 12, pp. 163-250, 1986.
    31. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    32. C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
    33. W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.
    34. S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D.C., 1980.
    35. Rotondi, R., Bella, G., Grimaldi, C., and Postrioti, L., “Atomization of High-Pressure Diesel Spray:Experimental Validtion of a New Breakup Model, ”SAE Technical Paper 2001-01-1070.
    36. Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, 2nd edition.

    下載圖示 校內:2003-08-05公開
    校外:2003-08-05公開
    QR CODE