簡易檢索 / 詳目顯示

研究生: 謝坤霖
Hsieh, Kun-Lin
論文名稱: 在光載微波通訊系統中運用半導體雷射注入穩定鎖住動態進行光雙單調製邊帶轉換與光電微波放大器
Optical DSB-to-SSB Conversion and Photonic Microwave Amplification Using Stable Locking Dynamics of Semiconductor Lasers for Radio-over-Fiber Links
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 光載微波系統半導體雷射非線性動態雙單調制邊帶轉換光微波放大
外文關鍵詞: Radio-over-Fiber, Semiconductor laser, Nonlinear Dynamics, DSB-to-SSB conversion, Photonic Microwave Amplification
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了產生光微波訊號以用於光載微波系統,直接調制或者外部調至是最簡單的方 法,此兩種方式通常會產生出雙邊帶調制訊號,然而因為光纖中的色散,此類型訊號 會使得微波功率隨著傳輸距離或者微波頻率產生劇烈的變化,如此便會嚴重限制基地 台的建構位置,為了克服如此效應,單邊帶調制訊號相對於雙邊帶調制訊號更適合在 光載微波系統中進行傳輸。在本篇論文中,藉由將半導體雷射操縱在穩定鎖住動態使 其共振腔產生紅移,如此便可將雙邊帶調制訊號轉換成單邊帶調制訊號,為了更加了 解注入穩定鎖住動態以利後續訊號處理的應用,其基本特性相對於不同住入條件亦會 進行深入分析。在此研究中所提出的方法,轉換後的單邊帶調制訊號,邊帶強度差可 同時達到 18 dB 的微波頻率從 22.7 GHz 遍及到 42.7 GHz,此 18 dB 的邊帶強度差異 味著在光纖中微波功率的最大變化可從大於 50 dB 減少到 2.2 dB,特別的是因為本篇 論文所提出的轉換方法是藉由將單一邊帶進行放大以代替抑制,因此其訊號本身的調 制深度會隨之增加,使得相同光功率下拍頻後的微波功率放大,連帶改善訊號品質並 且增加無線傳輸距離。其微波放大等相關特性亦在本篇論文中被討論,微波頻率從 12 GHz 到達 40 GHz,甚至超過,可藉由不同住入條件達到同樣 18 dB 的微波增益, 其放大後的微波訊號品質,包含相位雜訊以及半高寬皆可維持與原訊號相同,而寬頻 的增益意味著可轉換的傳輸速率可達到億赫茲等級,因此藉由此轉換方法的確可使得 訊號進行放大並且實際傳輸。

    For radio-over-fiber links, optical double-sideband modulation (DSB) signals, which are typically generated by the simplest scheme of direct or external modulations of optical carriers, suffer from the microwave power fading effect due to the chromatic dispersion over optical fibers. To mitigate such the unwanted effect, single-sideband modulation (SSB) signals are preferred. In this thesis, a semiconductor laser at stable locking dynamics is used as a unit to convert DSB signals into SSB signals through the red-shifted cavity resonance. To deeply realize the applied stable locking dynamics for further applications, its characteristics in terms of operation conditions are detailedly investigated as well. With the proposed scheme, DSB signals can be converted into SSB signals with a sideband rejection ratio of up to 18 dB over a broad microwave frequency of 22.7 to 42.7 GHz, which improves the maximum variation in microwave power from as large as 50 dB to 2.2 dB. Particularly, since the SSB feature is achieved by the enhancement of the lower modulation sideband instead of the suppression, the modulation depth increases, leading to the amplification in microwave power under the same optical power at the photodetector. This can improve the detection sensitivity and the transmission distance. The amplification of 18 dB is achieved over a broad microwave frequency from 12 GHz to more than 40 GHz. The phase features of the microwaves, including 3-dB linewidth and phase noise, are mostly preserved. The broad gain bandwidth of the modulation sidebands leads to the feasibility of data transmission in RoF links with the high data rate of the order of gigahertz. Hence, the detection sensitivity of the data after amplification is indeed improved with the amplified microwaves through the proposed scheme.

    ABSTRACT................................................................................................ I 摘要........................................................................................................ III 誌謝........................................................................................................ IV CONTENT ................................................................................................V LIST OF FIGURES......................................................................................VII Chapter 1 INTRODUCTION........................................................................1 1.1 Introduction.......................................................................................1 1.2 Radio-over-Fiber System....................................................................5 1.2.1 Architecture of RoF Links.................................................................5 1.2.2 Microwave Power Fading Effect........................................................7 1.2.3 Schemes for Mitigating MPFE...........................................................9 1.3 Photonic Microwave Amplification.....................................................15 1.4 Organization of Thesis.....................................................................16 Chapter 2 NONLINEAR DYNAMICS OF SEMICONDUCTOR LASERS..............17 2.1 Mechanism of Nonlinear Dynamics...................................................17 2.2 Experimental Apparatus and Laser Dynamics Mapping......................19 2.3 Characteristic Investigation on Stable Locking Dynamics...................26 Chapter 3 OPTICAL DSB-TO-SSB CONVERSION........................................30 3.1 Concept for DSB-to-SSB Conversion Using Stable Locking Dynamics.30 3.2 Experimental Apparatus....................................................................31 3.3 Demonstration..................................................................................33 3.4 Characteristic analysis......................................................................42 3.4.1 Influence of SCRSL on Sideband Rejection Ratio.............................42 3.4.2 Influence of Microwave Frequency on Sideband Rejection Ratio......43 3.4.3 Unmatched Microwave Frequency..................................................45 3.5 Application Analysis.........................................................................47 3.5.1 Microwave Tunability.....................................................................47 3.5.2 Sideband Rejection Ratio Tunability...............................................49 3.5.3 Adaptability...................................................................................49 Chapter 4 PHOTONIC MICROWAVE AMPLIFICATION.................................55 4.1 Experimental Apparatus....................................................................55 4.2 Demonstration..................................................................................56 4.3 Microwave Amplification...................................................................63 4.3.1 Influence of SCRin on Microwave Gain............................................63 4.3.2 Influence of SCRSL on Microwave Gain...........................................65 4.3.3 Microwave Tunability for Same Gain...............................................67 4.3.4 Microwave Gain Tunability.............................................................68 4.4 Data Analysis....................................................................................69 4.4.1 Experimental Apparatus.................................................................69 4.4.2 Bit-Error Rate Analysis...................................................................71 Chapter 5 CONCLUSION..........................................................................75 REFERENCE.............................................................................................77

    [1] X. Q. Qi and J. M. Liu, "Photonic Microwave Applications of the Dynamics of Semiconductor Lasers," IEEE J. Sel. Topics Quantum Electron., vol. 17, pp. 1198-1211, 2011.
    [2] J. P. Yao, "Microwave Photonics," J. Lightw. Technol., vol. 27, pp. 314-335, 2009.
    [3] S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser," Opt.
    Express, vol. 15, pp. 14921-14935, 2007.
    [4] S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, "Photonic microwave generation
    and transmission using direct modulation of stably injection-locked semiconductor
    lasers," Opt. Comm., vol. 284, pp. 3581-3589, 2011.
    [5] Y. H. Hung, C. H. Chu, and S. K. Hwang, "Optical double-sideband modulation to
    single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links," Opt. Lett., vol. 38, pp. 1482-1484, 2013.
    [6] Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, "Optical Single-Sideband Modulation Using a Fiber-Bragg-Grating-Based Optical Hilbert Transformer," IEEE Photon. Technol. Lett., vol. 23, pp. 558-560, 2011.
    [7] W. W. Zhang and R. A. Minasian, "Widely Tunable Single-Passband Microwave Photonic Filter Based on Stimulated Brillouin Scattering," IEEE Photon. Technol. Lett., vol. 23, pp. 1775-1777, 2011.
    [8] C. Hong, C. Zhang, M. J. Li, L. X. Zhu, L. Li, W. W. Hu, et al., "Single-Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-Over-Fiber Systems," IEEE Photon. Technol. Lett., vol. 22, pp. 462-464, 2010.
    [9] X. Y. Wang, M. Hanawa, K. Nakamura, K. Takano, and K. Nakagawa, "Sideband suppression characteristics of optical SSB generation filter with sampled FBG based 4-taps optical Hilbert transformer," Proc. APCC 2009, pp. 622-625, 2009.
    [10] H. J. Kim and J. I. Song, "All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications," Opt. Express, vol. 17, pp. 9810-9817, 2009.
    [11] J. J. Yu, M. F. Huang, Z. S. Jia, T. Wang, and G. K. Chang, "A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal," IEEE Photon. Technol. Lett., vol. 20, pp. 478-480, 2008.
    [12] H. K. Sung, E. K. Lau, and M. C. Wu, "Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers," IEEE Photon. Technol.
    77
    Lett., vol. 19, pp. 1005-1007, 2007.
    [13] S. C. Chan and J. M. Liu, "Frequency modulation on single sideband using
    controlled dynamics of an optically injected semiconductor laser," IEEE J. Quantum
    Electron., vol. 42, pp. 699-705, 2006.
    [14] G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in
    fiber-wireless systems incorporating external modulators," IEEE Trans. Microwave
    Theory and Tech., vol. 45, pp. 1410-1415, 1997.
    [15] M. H. Park and J. I. Song, "All-optical frequency upconversion of a quasi optical
    single sideband signal utilizing a nonlinear semiconductor optical amplifier for
    radio-over-fiber applications," Opt. Express, vol. 19, pp. 24499-24506, 2011.
    [16] T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked
    semiconductor lasers," IEEE Photon. Technol. Lett., vol. 9, pp. 1322-1324, 1997.
    [17] S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep., vol. 416, pp.
    1-128, 2005.
    [18] T. B. Simpson, J. M. Liu, K. F. Huag, and K. Tai, "Nonlinear dynamics induced by
    external optical injection in semiconductor lasers," Quantum Semiclass. Opt., vol. 9,
    p. 765, 1997.
    [19] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, "Instabilities and chaos in
    optically injected semiconductor lasers," Appl. Phys. Lett., vol. 67, pp. 2780-2782,
    1995.
    [20] T. B. Simpson, "Mapping the nonlinear dynamics of a distributed feedback
    semiconductor laser subject to external optical injection," Opt. Comm., vol. 215, pp.
    135-151, 2003.
    [21] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing,
    "Period-doubling route to chaos in a semiconductor laser subject to optical
    injection," Appl. Phys. Lett., vol. 64, pp. 3539-3541, 1994.
    [22] S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave
    generation using semiconductor laser dynamics," IEEE J. Sel. Topics Quantum
    Electron., vol. 10, pp. 1025-1032, 2004.
    [23] F. Y. Lin and J. M. Liu, "Nonlinear dynamics of a semiconductor laser with delayed
    negative optoelectronic feedback," IEEE J. Quantum Electron., vol. 39, pp. 562-568,
    2003.
    [24] T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and
    broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon.
    Technol. Lett., vol. 7, pp. 709-711, 1995.
    [25] S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct
    78
    modulation in 1.3-μm semiconductor lasers subject to strong injection locking,"
    IEEE Photon. Technol. Lett., vol. 16, pp. 972-974, 2004.
    [26] Y. Okajima, S. K. Hwang, and J. M. Liu, "Experimental observation of chirp
    reduction in bandwidth-enhanced semiconductor lasers subject to strong optical
    injection," Opt. Comm., vol. 219, pp. 357-364, 2003.
    [27] H. F. Chen, J. M. Liu, and T. B. Simpson, "Response characteristics of direct current
    modulation on a bandwidth-enhanced semiconductor laser under strong injection
    locking," Opt. Comm., vol. 173, pp. 349-355, 2000.
    [28] X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation
    bandwidth enhancement in distributed feedback lasers with external light injection,"
    Electron. Lett., vol. 34, pp. 2031-2032, 1998.
    [29] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, "Modulation bandwidth, noise,
    and stability of a semiconductor laser subject to strong injection locking," IEEE
    Photon. Technol. Lett., vol. 9, pp. 1325-1327, 1997.
    [30] J. P. Zhuang and S. C. Chan, "Tunable photonic microwave generation using
    optically injected semiconductor laser dynamics with optical feedback stabilization,"
    Opt. Lett., vol. 38, pp. 344-346, 2013.
    [31] C. C. Cui and S. C. Chan, "Performance Analysis on Using Period-One Oscillation
    of Optically Injected Semiconductor Lasers for Radio-Over-Fiber Uplinks," IEEE J.
    Quantum Electron., vol. 48, pp. 490-499, 2012.
    [32] S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations
    in semiconductor lasers subject to optical injection," IEEE J. Sel. Topics Quantum
    Electron., vol. 10, pp. 974-981, 2004.
    [33] S. K. Hwang and D. H. Liang, "Effects of linewidth enhancement factor on
    period-one oscillations of optically injected semiconductor lasers," Appl. Phys. Lett.,
    vol. 89, pp. 061120-061120-3, 2006.
    [34] S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-fiber AM-to-FM upconversion
    using an optically injected semiconductor laser," Opt. Lett., vol. 31, pp. 2254-2256,
    2006.
    [35] S. K. Hwang, H. F. Chen, and C. Y. Lin, "All-optical frequency conversion using
    nonlinear dynamics of semiconductor lasers," Opt. Lett., vol. 34, pp. 812-814, 2009.
    [36] J. M. Liu and T. B. Simpson, "Four-wave mixing and optical modulation in a
    semiconductor laser," IEEE J. Quantum Electron., vol. 30, pp. 957-965, 1994.
    [37] J. M. Liu, H. F. Chen, and S. Tang, "Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications," Digital Comm. Using
    Chaos and Nonlinear Dynamics, pp. 285-340, 2006.
    [38] S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, "Compensation of
    79
    dispersion-induced power fading for highly linear radio-over-fiber link using carrier
    phase-shifted double sideband modulation," Opt. Lett., vol. 36, pp. 546-548, 2011.
    [39] M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, "Optical carrier filtering for high dynamic range fibre optic links," Electron. Lett., vol. 30, pp.
    2157-2158, 1994.
    [40] R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic
    Systems by Carrier Substraction," IEEE Photon. Technol. Lett. , vol. 7, pp. 218-220,
    1995.
    [41] M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission
    improvement in fiber wireless links using fiber Bragg gratings," IEEE Photon.
    Technol. Lett., vol. 17, pp. 190-192, 2005.
    [42] S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, G. Charlet, and J. Chazelas,
    "Stimulated Brillouin scattering for microwave signal modulation depth increase in
    optical links," Electron. Lett., vol. 36, pp. 944-946, 2000.
    [43] K. J. Williams and R. D. Esman, "Stimulated Brillouin scattering for improvement of
    microwave fibre-optic link efficiency," Electron. Lett., vol. 30, pp. 1965-1966, 1994.
    [44] W.Li,N.H.Zhu,L.X.Wang,J.H.Ke,S.F.Chen,X.Q.Qi,etal., "Frequency-Pushing Effect in Single-Mode Diode Laser Subject to External
    Dual-Beam Injection," IEEE J. Quantum Electron., vol. 46, pp. 796-803, 2010.
    [45] S. K. Hwang and J. M. Liu, "Dynamical characteristics of an optically injected
    semiconductor laser," Opt. Comm., vol. 183, pp. 195-205, 2000.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE