簡易檢索 / 詳目顯示

研究生: 鄧保利
Loi, Dang Bao
論文名稱: 晶格型樑柱接頭之數值研究
NUMERICAL STUDIES OF LATTICE-TYPE BEAM-COLUMN CONNECTORS
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 79
中文關鍵詞: 黏彈性質彈塑性質複合材料預應變有限元素法
外文關鍵詞: Viscoelastic properties, elastoplastic properties, composite materials, pre-strain, finite element method
相關次數: 點閱:130下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 樑柱接頭在結構系統中扮演極重要的角色,本論文探討晶格型樑柱接頭的力學性質,晶格樑柱接頭是由許多柱狀桿件,稱為「微桿件」,組織而成,因其幾何形狀類似原子晶格結構,稱之為晶格型樑柱接頭,並以高分子材料包覆微桿件,藉由調控材料與幾何參數,使整體樑柱接頭達到高勁度、高阻尼、高強度之等效性質,同時具有黏彈阻尼特性,以為了在結構系統中,建立分散式阻尼系統,提供重要的接頭元件,提升結構物的整體消能性質,增加其對地震的抵抗力。本研究使用有限元素法,計算不同幾何設計與材料選取下的整體力學性質。研究結果顯示,因為橡膠之黏彈性,此接頭在線性變形下,展現高等效阻尼性質。於微桿件中施予預應變,亦可增加整體阻尼。另外、由懸臂樑與十字型三維結構計算結果,除了線黏彈性消能外,此晶格型樑柱接頭亦可藉由微桿件的塑性變形,提供塑性消能。本研究所提出的晶格型樑柱接頭,可視為一種人造多孔隙材料,經由適當的設計,此類材料可提供所需的力學性質,用於土木工程相關之應用。

    The importance of the beam-column joints in steel structures cannot be overemphasized. In this work, a lattice-type beam-column connector is proposed to provide sufficient stiffness, strength and some viscoelastic damping, as well as plastic energy dissipation. The connector is comprised by short micro-rods in a cube, resembling the atomic lattice structures. By adding more micro-rods and suitable geometric arrangement, the connector exhibits sufficient stiffness and strength. Adding rubber increases the its damping. Materials of the micro-rods are conventional construction steel, soft metal, such as tin, or hard metal, tungsten. The empty space in the cube can be filled up with polymer material, such as rubber-like. Hence, the connector becomes a metal-polymer composite, where the metallic micro-rods are embedded in the polymer matrix. Variety of structures with beam-column connector have been simulated by finite element analysis. Our results show that energy can be significantly dissipated by plastic and viscoelastic deformation. It is found that, in the linear range, the
    energy dissipation capacity of the composite connector is largely enhanced by the rubber-like material. Pre-straining of the micro-rods also show damping enhancement. In addition, our results show tunable stiffness and strength, as well as plastic deformation, can be achieved by designing the micro-rods, including their geometry and material selection, in the cube. Linear viscoelastic damping of the cantilever beam with the connector is small, but more than the case without using the lattice-type beam-column connector. Our research demonstrates that artificial porous material, such as the lattice-type connector, may provide sufficient mechanical properties to be used in civil engineering applications.

    CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Damping mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.2 High damping high stiffness composite materials . . . . . . . . . . . . 2 1.2.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Yielding Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.2 Yield function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.3 The von Mises criterion . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Hardening models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Structural damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 Loss tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Computational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Numerical algorithms for computational inelasticity . . . . . . . . . . . . . . . 14 3.1.1 Continuum-mechanics framework for elastoplastic analysis . . . . . . . 14 3.2 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Metallic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Hypothetical rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Verification analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Steel under static plastic deformation . . . . . . . . . . . . . . . . . . 18 3.3.2 Viscoelastic properties of a hypothetical rubber beam . . . . . . . . . . 18 3.3.3 Pre-strain demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 S-shape steel rod and pre-strain rod embedded in rubber-like box . . . 21 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Models of lattice-type beam-column connectors . . . . . . . . . . . . . . . . . 24 4.2 Various 3D cantilever beams analysis . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 3D conventional steel rod analysis . . . . . . . . . . . . . . . . . . . . 29 4.2.2 3D tin rod analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.3 3D tungsten rod analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 A 3D cantilever beam with the connector . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Linear elastic responses of the connectors . . . . . . . . . . . . . . . . 36 4.3.2 Elastoplastic responses of the connectors . . . . . . . . . . . . . . . . 38 4.3.3 Viscoelastic responses of the connectors . . . . . . . . . . . . . . . . . 43 4.3.4 Plastic and viscoelastic responses of the connectors . . . . . . . . . . . 45 4.4 A 3D cross-shape frame with the connector . . . . . . . . . . . . . . . . . . . 48 4.4.1 Eigenfrequency of 3D cross-shape frame . . . . . . . . . . . . . . . . 50 4.4.2 Linear elastic responses of the connectors . . . . . . . . . . . . . . . . 51 4.4.3 Elastoplastic responses of the connectors . . . . . . . . . . . . . . . . 52 4.4.4 Viscoelastic response of connectors . . . . . . . . . . . . . . . . . . . 56 4.4.5 Plastic and viscoelastic response of connectors . . . . . . . . . . . . . 58 4.5 3D portal frame with the connector . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.1 Elastoplastic responses . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.2 Eigenfrequency analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5.3 Earthquake spectrum response . . . . . . . . . . . . . . . . . . . . . . 66 4.6 Pre-strain micro-rods in lattice-type beam-column connector . . . . . . . . . . 67 4.6.1 Pre-strain micro-rods in 3D lattice-type connector . . . . . . . . . . . . 67 5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    [1] Y. Jiang and J. Zhang, “Benchmark experiments and characteristic cyclic plasticity deformation,”
    International Journal of Plasticity, vol. 24, pp. 1481–1515, Sep. 2008.
    [2] L. Calado, J. M. Proenca, M. Espinha, and C. A. Castiglioni, “Hysteretic behavior of
    dissipative welded fuses for earthquake resistant composite steel and concrete frames,”
    Steel Compos. Struct., vol. 14, pp. 547–569, Jun. 2013.
    [3] S.-J. Chen, C. H. Yeh, and J. M. Chu, “Ductile steel beam-to-column connections for
    seismic resistance,” Journal of Structural Engineering, vol. 122, pp. 1292–1299, Nov.
    1996.
    [4] Z.-D. Xu, D.-H. Jia, and X.-C. Zhang, “Performance tests and mathematical model considering
    magnetic saturation for magnetorheological damper,” Journal of Intelligent Material
    Systems and Structures, vol. 23, pp. 1331–1349, May 2012.
    [5] L. Dong and R. Lakes, “Advanced damper with high stiffness and high hysteresis damping
    based on negative structural stiffness,” International Journal of Solids and Structures,
    vol. 50, pp. 2416–2423, Jul. 2013.
    [6] R. Tremblay, P. Bolduc, R. Neville, and R. DeVall, “Seismic testing and performance of
    buckling-restrained bracing systems,” Canadian Journal of Civil Engineering, vol. 33,
    pp. 183–198, Feb. 2006.
    [7] D. D. Chung, Composite Materials. Springer London, 2010.
    [8] R. N. Capps and L. L. Beumel, “Dynamic mechanical testing,” in ACS Symposium Series,
    pp. 63–78, American Chemical Society (ACS), May 1990.
    [9] J. Dugundji, “Book review: Vibration damping, by ahid d. nashif, david i. g. jones, and
    john p. henderson,” AIAA Journal, vol. 24, pp. 1055–1055, Jun. 1986.
    [10] A. Ferreira, A. Ara´ujo, A. Neves, J. Rodrigues, E. Carrera, M. Cinefra, and C. M. Soares,
    “A finite element model using a unified formulation for the analysis of viscoelastic sandwich
    laminates,” Composites Part B: Engineering, vol. 45, pp. 1258–1264, Feb. 2013.
    [11] Y. E. Ibrahim, J. Marshall, and F. A. Charney, “A visco-plastic device for seismic protection
    of structures,” Journal of Constructional Steel Research, vol. 63, pp. 1515–1528,
    Nov. 2007.
    [12] Y.-C. Wang and C.-C. Ko, “Energy dissipation of steel-polymer composite beam-column
    connector,” Steel and Composite Structures, vol. 18, pp. 1161–1176, May 2015.
    [13] J. Lubliner, Plasticity Theory. New York, USA: Macmillan Publishing Company, 2008.
    [14] R. Lakes, Viscoelastic Materials. New York, NY, USA: Cambridge University Press,
    2009.
    [15] J. Simo and T. Hughes, Computational Inelasticity. Interdisciplinary Applied Mathematics,
    Springer New York, 1998.
    [16] S. Park, “Analytical modeling of viscoelastic dampers for structural and vibration control,”
    International Journal of Solids and Structures, vol. 38, pp. 8065–8092, Nov 2001.

    下載圖示 校內:2017-07-13公開
    校外:2017-08-13公開
    QR CODE